Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds nerve damage in previously mysterious chronic pain syndrome

31.01.2006


Reduction in small-fiber nerves may underlie complex regional pain syndrome-I (reflex sympathetic dystrophy)



Researchers at Massachusetts General Hospital (MGH) have found the first evidence of a physical abnormality underlying the chronic pain condition called reflex sympathetic dystrophy or complex regional pain syndrome-I (CRPS-I). In the February issue of the journal Pain, they describe finding that skin affected by CRPS-I pain appears to have lost some small-fiber nerve endings, a change characteristic of other neuropathic pain syndromes.

"This sort of small-fiber degeneration has been found in every nerve pain condition ever studied, including postherpetic neuralgia and neuropathies associated with diabetes and HIV infection," says Anne Louise Oaklander, MD, PhD, director of the MGH Nerve Injury Unit, who led the study. "The nerve damage in those conditions has been much more severe, which may be why it’s been so hard to detect CRPS-I-related nerve damage."


Complex regional pain syndrome is the current name for a baffling condition first described in the 19th century in which some patients are left with severe chronic pain and other symptoms – swelling, excess sweating, change in skin color and temperature – after what may be a fairly minor injury. The fact that patients’ pain severity is out of proportion to the original injury is a hallmark of the syndrome, and has led many to doubt whether patients’ symptoms are caused by physical damage or by a psychological disorder. Pain not associated with a known nerve injury has been called CRPS-I, while symptoms following damage to a major nerve has been called CRPS-II.

Because small-fiber nerve endings transmit pain messages and control skin color and temperature and because damage to those fibers is associated with other painful disorders, the MGH research team hypothesized that those fibers might also be involved with CRPS-I. To investigate their theory they studied 18 CRPS-I patients and 7 control patients with similar chronic symptoms known to be caused by arthritis. Small skin biopsies were taken under anesthesia from the most painful area, from a pain-free area on the same limb and from a corresponding unaffected area on the other side of the body.

The skin biopsies showed that, the density of small-fiber nerve endings in CRPS-I patients was reduced from 25 to 30 percent in the affected areas compared with unaffected areas. No nerve losses were seen in samples from the control participants, suggesting that the damage was specific to CRPS-I, not to pain in general. Tests of sensory function performed in the same areas found that a light touch or slight heat was more likely to be perceived as painful in the affected areas of CRPS-I patients than in the unaffected areas, also indicating abnormal neural function.

"The fact that CRPS-I now has an identified cause takes it out of the realm of so-called ’psychosomatic illness.’ One of the great frustrations facing CRPS-I patients has been the lack of an explanation for their symptoms. Many people are skeptical of their motivations, and some physicians are reluctant to prescribe pain medications when the cause of pain is unknown," says Oaklander. "Our results suggest that CRPS-I patients should be evaluated by neurologists who specialize in nerve injury and be treated with medications or procedures that have proven effective for other nerve-injury pain syndromes." She adds that the next research steps should investigate why some people are left with CRPS after injuries that do not cause long-term problems for most patients, determine the best way of diagnosing the syndrome and evaluate potential treatments.

"Investigations that identify the causes of disease are only possible if patients are willing to come to the lab and allow researchers to study them," she adds. "We are tremendously grateful to these CRPS patients, whose willingness to let us study them – despite their chronic pain – allowed us to make an important step in helping those who suffer from this condition." Oaklander is an assistant professor of Anaesthesia and Neurology at Harvard Medical School.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>