Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds nerve damage in previously mysterious chronic pain syndrome

31.01.2006


Reduction in small-fiber nerves may underlie complex regional pain syndrome-I (reflex sympathetic dystrophy)



Researchers at Massachusetts General Hospital (MGH) have found the first evidence of a physical abnormality underlying the chronic pain condition called reflex sympathetic dystrophy or complex regional pain syndrome-I (CRPS-I). In the February issue of the journal Pain, they describe finding that skin affected by CRPS-I pain appears to have lost some small-fiber nerve endings, a change characteristic of other neuropathic pain syndromes.

"This sort of small-fiber degeneration has been found in every nerve pain condition ever studied, including postherpetic neuralgia and neuropathies associated with diabetes and HIV infection," says Anne Louise Oaklander, MD, PhD, director of the MGH Nerve Injury Unit, who led the study. "The nerve damage in those conditions has been much more severe, which may be why it’s been so hard to detect CRPS-I-related nerve damage."


Complex regional pain syndrome is the current name for a baffling condition first described in the 19th century in which some patients are left with severe chronic pain and other symptoms – swelling, excess sweating, change in skin color and temperature – after what may be a fairly minor injury. The fact that patients’ pain severity is out of proportion to the original injury is a hallmark of the syndrome, and has led many to doubt whether patients’ symptoms are caused by physical damage or by a psychological disorder. Pain not associated with a known nerve injury has been called CRPS-I, while symptoms following damage to a major nerve has been called CRPS-II.

Because small-fiber nerve endings transmit pain messages and control skin color and temperature and because damage to those fibers is associated with other painful disorders, the MGH research team hypothesized that those fibers might also be involved with CRPS-I. To investigate their theory they studied 18 CRPS-I patients and 7 control patients with similar chronic symptoms known to be caused by arthritis. Small skin biopsies were taken under anesthesia from the most painful area, from a pain-free area on the same limb and from a corresponding unaffected area on the other side of the body.

The skin biopsies showed that, the density of small-fiber nerve endings in CRPS-I patients was reduced from 25 to 30 percent in the affected areas compared with unaffected areas. No nerve losses were seen in samples from the control participants, suggesting that the damage was specific to CRPS-I, not to pain in general. Tests of sensory function performed in the same areas found that a light touch or slight heat was more likely to be perceived as painful in the affected areas of CRPS-I patients than in the unaffected areas, also indicating abnormal neural function.

"The fact that CRPS-I now has an identified cause takes it out of the realm of so-called ’psychosomatic illness.’ One of the great frustrations facing CRPS-I patients has been the lack of an explanation for their symptoms. Many people are skeptical of their motivations, and some physicians are reluctant to prescribe pain medications when the cause of pain is unknown," says Oaklander. "Our results suggest that CRPS-I patients should be evaluated by neurologists who specialize in nerve injury and be treated with medications or procedures that have proven effective for other nerve-injury pain syndromes." She adds that the next research steps should investigate why some people are left with CRPS after injuries that do not cause long-term problems for most patients, determine the best way of diagnosing the syndrome and evaluate potential treatments.

"Investigations that identify the causes of disease are only possible if patients are willing to come to the lab and allow researchers to study them," she adds. "We are tremendously grateful to these CRPS patients, whose willingness to let us study them – despite their chronic pain – allowed us to make an important step in helping those who suffer from this condition." Oaklander is an assistant professor of Anaesthesia and Neurology at Harvard Medical School.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Studies and Analyses:

nachricht Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>