Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

St. Jude conducts first large-scale bird flu genome study

27.01.2006


Unique resources at St. Jude Children’s Research Hospital let researchers generate a "gold mine" of data to track evolution of bird flu virus genes and understand how they cooperate to cause disease



Investigators at St. Jude Children’s Research Hospital have completed the first large-scale study of bird flu virus genomes, thereby doubling the amount of genetic information available on the genes and proteins of these viruses. The results of the project could lead to major insights into the bird flu virus known as H5N1, the researchers said. H5N1 is the bird flu virus currently infecting humans in Asia and Eastern Europe, and flu experts fear it could mutate in a way that would allow it to cause a worldwide pandemic in humans.

"These studies provide the first fundamental insight into the evolution of influenza viruses in nature--the source of all influenza viruses that affect humans, domestic animals and birds," said Robert G. Webster, Ph.D., a member of the Infectious Diseases department and holder of the Rose Marie Thomas Chair at St. Jude. "This information is a true gold mine, and we are inviting all of the miners to help us unlock the secrets of influenza."


Webster is an internationally renowned expert on bird flu viruses and a co-author of the report that appears in the January 27 issue of Science.

St. Jude was uniquely positioned to conduct these studies because it houses Webster’s large collection of bird flu viruses collected over several decades. The hospital is also home to St. Jude’s Hartwell Center for Bioinformatics and Biotechnology, which provided the necessary expertise and biotechnology resources; and its supercomputer has the horsepower needed to conduct these studies.

"Despite the major threat to human health posed by these viruses, there was very little information available on the entire genomes of bird flu viruses," said Clayton Naeve, Ph.D., director of St. Jude’s Hartwell Center. "The St. Jude Influenza Virus Genome project provides a major contribution to our understanding of H5N1 and other bird flu viruses. Now we’re in a much better position to understand what makes these viruses tick. And that could help us learn how to control the avian influenza viruses that threaten humans."

Naeve is senior author of the report in Science.

The project produced 70 million bases of sequence information leading to DNA sequences for 2,196 genes and 169 complete bird flu genomes from the St. Jude collection, including representatives of all known subtypes of the virus including H5 bird flu. Preliminary analysis of these data and development of new analysis software has led to the discovery of new forms of bird flu genes, how these viruses evolve through time and the identification of genes that travel together through evolution. The St. Jude research also made an intriguing discovery that avian influenza viruses have a particular molecular feature that human influenza viruses do not have, which may cause them to be more toxic when infecting human cells.

"The major accomplishment of this project is that it gives the scientific community significantly more new data and analytical tools to use in the study of these potentially very dangerous viruses," said John C. Obenauer, Ph.D., a Bioinformatics associate research scientist at St. Jude’s Hartwell Center. "In the future, that might lead to effective strategies for controlling outbreaks of these viruses in birds and humans." Obenauer is first author of the paper.

Bonnie Kourvelas | EurekAlert!
Further information:
http://www.stjude.org

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>