Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

St. Jude conducts first large-scale bird flu genome study

27.01.2006


Unique resources at St. Jude Children’s Research Hospital let researchers generate a "gold mine" of data to track evolution of bird flu virus genes and understand how they cooperate to cause disease



Investigators at St. Jude Children’s Research Hospital have completed the first large-scale study of bird flu virus genomes, thereby doubling the amount of genetic information available on the genes and proteins of these viruses. The results of the project could lead to major insights into the bird flu virus known as H5N1, the researchers said. H5N1 is the bird flu virus currently infecting humans in Asia and Eastern Europe, and flu experts fear it could mutate in a way that would allow it to cause a worldwide pandemic in humans.

"These studies provide the first fundamental insight into the evolution of influenza viruses in nature--the source of all influenza viruses that affect humans, domestic animals and birds," said Robert G. Webster, Ph.D., a member of the Infectious Diseases department and holder of the Rose Marie Thomas Chair at St. Jude. "This information is a true gold mine, and we are inviting all of the miners to help us unlock the secrets of influenza."


Webster is an internationally renowned expert on bird flu viruses and a co-author of the report that appears in the January 27 issue of Science.

St. Jude was uniquely positioned to conduct these studies because it houses Webster’s large collection of bird flu viruses collected over several decades. The hospital is also home to St. Jude’s Hartwell Center for Bioinformatics and Biotechnology, which provided the necessary expertise and biotechnology resources; and its supercomputer has the horsepower needed to conduct these studies.

"Despite the major threat to human health posed by these viruses, there was very little information available on the entire genomes of bird flu viruses," said Clayton Naeve, Ph.D., director of St. Jude’s Hartwell Center. "The St. Jude Influenza Virus Genome project provides a major contribution to our understanding of H5N1 and other bird flu viruses. Now we’re in a much better position to understand what makes these viruses tick. And that could help us learn how to control the avian influenza viruses that threaten humans."

Naeve is senior author of the report in Science.

The project produced 70 million bases of sequence information leading to DNA sequences for 2,196 genes and 169 complete bird flu genomes from the St. Jude collection, including representatives of all known subtypes of the virus including H5 bird flu. Preliminary analysis of these data and development of new analysis software has led to the discovery of new forms of bird flu genes, how these viruses evolve through time and the identification of genes that travel together through evolution. The St. Jude research also made an intriguing discovery that avian influenza viruses have a particular molecular feature that human influenza viruses do not have, which may cause them to be more toxic when infecting human cells.

"The major accomplishment of this project is that it gives the scientific community significantly more new data and analytical tools to use in the study of these potentially very dangerous viruses," said John C. Obenauer, Ph.D., a Bioinformatics associate research scientist at St. Jude’s Hartwell Center. "In the future, that might lead to effective strategies for controlling outbreaks of these viruses in birds and humans." Obenauer is first author of the paper.

Bonnie Kourvelas | EurekAlert!
Further information:
http://www.stjude.org

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>