Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Underdogs in the understory: Study suggests nature favors rarer trees

27.01.2006


A study of seven tropical forests around the world has revealed that nature encourages biodiversity by favoring the growth of less common trees. The landmark study, conducted by 33 ecologists from 12 countries and published in the Jan. 27 issue of the journal Science, conclusively demonstrates that diversity matters and has ecological importance to tropical forests. Helene Muller-Landau, an assistant professor of ecology in the University of Minnesota’s College of Biological Sciences, is a co-author of the study, which supports previous research by her colleague David Tilman, a Regents Professor of Ecology, into the causes and value of biodiversity.



"This research has the surprising finding that biodiversity in tropical rain forests and Minnesota prairies arises from the same kinds of underlying processes. It brings us a step closer to understanding the causes of the world’s amazing biodiversity," Tilman said.

Muller-Landau contributed quantitative skills for analyzing and interpreting the data.


"After all the effort that went into the analyses, it was neat to see that results from such different forests were so similar," Muller-Landau said.

The study was conducted on seven undisturbed forest plots, or "tropical forest observatories," maintained and studied by research institutions in Borneo, India, Malaysia, Panama, Puerto Rico and Thailand, under the coordination of the Center for Tropical Forest Science of the Smithsonian Tropical Research Institute, based in Panama. Christopher Wills, professor of biology at the University of California, San Diego, was the lead author.

The forest plots are themselves diverse. They range from dense and species-rich wet rain forest to drier and more open forest that is often swept by fires. Even so, all the forests show the same pattern of increasing local diversity as trees age.

The authors say rare trees may have an advantage because they are less vulnerable to animals, fungi, and microorganisms that prey on common trees and because they don’t have the same resource needs as common trees.

Trees in "monoculture" forests, where all individuals are the same species, are very susceptible to predators and diseases, and also compete with each other for the same resources.

The new study raises questions about whether other ecosystems, from temperate forests to coral reefs, also select for biodiversity.

Mark Cassutt | EurekAlert!
Further information:
http://www.umn.edu

More articles from Studies and Analyses:

nachricht Physics of bubbles could explain language patterns
25.07.2017 | University of Portsmouth

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>