Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Underdogs in the understory: Study suggests nature favors rarer trees

27.01.2006


A study of seven tropical forests around the world has revealed that nature encourages biodiversity by favoring the growth of less common trees. The landmark study, conducted by 33 ecologists from 12 countries and published in the Jan. 27 issue of the journal Science, conclusively demonstrates that diversity matters and has ecological importance to tropical forests. Helene Muller-Landau, an assistant professor of ecology in the University of Minnesota’s College of Biological Sciences, is a co-author of the study, which supports previous research by her colleague David Tilman, a Regents Professor of Ecology, into the causes and value of biodiversity.



"This research has the surprising finding that biodiversity in tropical rain forests and Minnesota prairies arises from the same kinds of underlying processes. It brings us a step closer to understanding the causes of the world’s amazing biodiversity," Tilman said.

Muller-Landau contributed quantitative skills for analyzing and interpreting the data.


"After all the effort that went into the analyses, it was neat to see that results from such different forests were so similar," Muller-Landau said.

The study was conducted on seven undisturbed forest plots, or "tropical forest observatories," maintained and studied by research institutions in Borneo, India, Malaysia, Panama, Puerto Rico and Thailand, under the coordination of the Center for Tropical Forest Science of the Smithsonian Tropical Research Institute, based in Panama. Christopher Wills, professor of biology at the University of California, San Diego, was the lead author.

The forest plots are themselves diverse. They range from dense and species-rich wet rain forest to drier and more open forest that is often swept by fires. Even so, all the forests show the same pattern of increasing local diversity as trees age.

The authors say rare trees may have an advantage because they are less vulnerable to animals, fungi, and microorganisms that prey on common trees and because they don’t have the same resource needs as common trees.

Trees in "monoculture" forests, where all individuals are the same species, are very susceptible to predators and diseases, and also compete with each other for the same resources.

The new study raises questions about whether other ecosystems, from temperate forests to coral reefs, also select for biodiversity.

Mark Cassutt | EurekAlert!
Further information:
http://www.umn.edu

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>