Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pair of studies offer new clues to combat antibiotic resistance

25.01.2006


In the continuing battle against antibiotic resistance, two new studies shed light on the complex defense mechanisms pathogenic bacteria use to evade antibiotic attack, an understanding of which could lead to new, more effective antibiotics to help save lives and combat the growing problem of antibiotic resistance. The studies, both of which target chemical components in the protective membrane surrounding bacterial cells, will appear in the February 17 inaugural print issue of ACS Chemical Biology, a new monthly publication of the American Chemical Society, the world’s largest scientific society.



In one study, researchers from the University of Michigan College of Pharmacy in Ann Arbor and the Borstel Research Center in Germany genetically engineered a strain of E. coli so that it lacks its normal outer protective layer of lipopolysaccharides, complex structures that help them defend against antibiotic attack. Removal of this layer is believed to make E. coli and other gram-negative bacteria more vulnerable to antibiotic attack, the scientists say.

"The study is further proof-of-principle that the spectrum of activity of antibiotics can be significantly extended by targeting the formation of lipopolysaccharides in the outer membrane," says study co-author Timothy C. Meredith, Ph.D., a medicinal chemist who conducted the research as a doctoral student at the University of Michigan with Ron Woodard, Ph.D., a professor of medicinal chemistry at the university. Meredith is currently a researcher at Harvard Medical School in Boston.


Gram-negative bacteria, considered among the most virulent, include strains that are known to cause food borne illness, bubonic plague, Legionnaires’ disease and cholera, among others. They are among the most difficult bugs to control using antibiotics, researchers say.

In another study published in the journal, researchers at Harvard Medical School and Harvard University built synthetic versions of natural substrates used by key enzymes to make teichoic acids, polymeric structures in the membrane surrounding gram-positive bacteria. The polymers are considered essential for bacterial survival. Until now, these enzyme precursors have been difficult to study due to their presence in low amounts, complexity and insolubility, says study leader Suzanne Walker, Ph.D., a professor in the Microbiology Department at Harvard Medical School.

The availability of synthetic precursors will make it easier to study how the gram-positive bacterial membrane is formed and aid in the design of new antibiotics to block its formation, says Walker. Her lab will soon begin screening for compounds that can block this important chemical pathway, she says.

Gram-positive bacteria include anthrax and other strains that cause upper respiratory infections and sepsis. In comparison to gram-negative bacteria, they are generally considered easier to control with antibiotics.

"Antibiotic resistance is a huge problem that is only going to get worse. We need new targets, especially if we’re going to circumvent resistance," Walker says.

Both research teams caution that these new approaches may be years away from human testing and clinical use. Even if effective, bacteria can eventually develop ways to circumvent even the best laid approaches, underscoring the need for a better understanding of resistance machinery and the availability of new antibiotics, they say. Limited and selective use of antibiotics to prevent their overuse is also a way to stem resistance, according to health experts.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>