Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pair of studies offer new clues to combat antibiotic resistance

25.01.2006


In the continuing battle against antibiotic resistance, two new studies shed light on the complex defense mechanisms pathogenic bacteria use to evade antibiotic attack, an understanding of which could lead to new, more effective antibiotics to help save lives and combat the growing problem of antibiotic resistance. The studies, both of which target chemical components in the protective membrane surrounding bacterial cells, will appear in the February 17 inaugural print issue of ACS Chemical Biology, a new monthly publication of the American Chemical Society, the world’s largest scientific society.



In one study, researchers from the University of Michigan College of Pharmacy in Ann Arbor and the Borstel Research Center in Germany genetically engineered a strain of E. coli so that it lacks its normal outer protective layer of lipopolysaccharides, complex structures that help them defend against antibiotic attack. Removal of this layer is believed to make E. coli and other gram-negative bacteria more vulnerable to antibiotic attack, the scientists say.

"The study is further proof-of-principle that the spectrum of activity of antibiotics can be significantly extended by targeting the formation of lipopolysaccharides in the outer membrane," says study co-author Timothy C. Meredith, Ph.D., a medicinal chemist who conducted the research as a doctoral student at the University of Michigan with Ron Woodard, Ph.D., a professor of medicinal chemistry at the university. Meredith is currently a researcher at Harvard Medical School in Boston.


Gram-negative bacteria, considered among the most virulent, include strains that are known to cause food borne illness, bubonic plague, Legionnaires’ disease and cholera, among others. They are among the most difficult bugs to control using antibiotics, researchers say.

In another study published in the journal, researchers at Harvard Medical School and Harvard University built synthetic versions of natural substrates used by key enzymes to make teichoic acids, polymeric structures in the membrane surrounding gram-positive bacteria. The polymers are considered essential for bacterial survival. Until now, these enzyme precursors have been difficult to study due to their presence in low amounts, complexity and insolubility, says study leader Suzanne Walker, Ph.D., a professor in the Microbiology Department at Harvard Medical School.

The availability of synthetic precursors will make it easier to study how the gram-positive bacterial membrane is formed and aid in the design of new antibiotics to block its formation, says Walker. Her lab will soon begin screening for compounds that can block this important chemical pathway, she says.

Gram-positive bacteria include anthrax and other strains that cause upper respiratory infections and sepsis. In comparison to gram-negative bacteria, they are generally considered easier to control with antibiotics.

"Antibiotic resistance is a huge problem that is only going to get worse. We need new targets, especially if we’re going to circumvent resistance," Walker says.

Both research teams caution that these new approaches may be years away from human testing and clinical use. Even if effective, bacteria can eventually develop ways to circumvent even the best laid approaches, underscoring the need for a better understanding of resistance machinery and the availability of new antibiotics, they say. Limited and selective use of antibiotics to prevent their overuse is also a way to stem resistance, according to health experts.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>