Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Darkness More Than Triples EMS Helicopter Crash Fatality Risk

24.01.2006


Bad Weather Increases Risk Eight-Fold

Post-crash fires, darkness or bad weather greatly decrease the likelihood of surviving an emergency medical service (EMS) helicopter crash, according to a study by researchers from the Johns Hopkins Bloomberg School of Public Health’s Center for Injury Research and Policy and Johns Hopkins School of Medicine. Improving crashworthiness of helicopters and reducing trips during hazardous conditions can decrease EMS helicopter fatality rates. The study was recently published online by Annals of Emergency Medicine.

“Crashes of EMS helicopters have increased in recent years, raising concern for patients, as well as pilots, paramedics and flight nurses,” said Susan P. Baker, MPH, a professor in the Bloomberg School of Public Health’s Department of Health Policy and Management and Center for Injury Research and Policy. “Our study found that darkness more than triples the risk of fatalities when EMS helicopters crash and that bad weather increases the risk eight-fold. Helicopter EMS programs should recognize these risky conditions and transport patients by air only when the benefit clearly exceeds the risk of the flight.”



The study authors examined National Transportation Safety Board records of EMS helicopter crashes between January 1, 1983, and April 30, 2005. During the 22-year study period, 184 occupants died in 182 EMS helicopter crashes. A majority (77 percent) of crashes occurred when weather conditions required pilots to fly primarily by referencing their instruments rather than using outside visual cues. In darkness, 56 percent of crashes were fatal, as compared with 24 percent of crashes not in darkness. One in four EMS helicopters is likely to crash during 15 years of service. The death rate for EMS flight crew members is 20 times the rate of all U.S. workers.

The researchers also found that 76 percent of the crashes with post-crash fires were fatal. A previous study by Baker and colleagues published in the August 2005 edition of Aviation, Space and Environmental Medicine, revealed that the potential for post-crash fires in survivable crashes was greater in civilian helicopters than in their military counterparts because the standards for civilian fuel systems are not as strict as those for military helicopters.

Additional studies should be conducted to determine which preventive measures—such as equipping pilots with night-vision goggles, reducing night flights by using a protocol to determine which cases absolutely require helicopter transport, using better restraints, energy-absorbing landing gear and seats and crash-resistant fuel systems—are most efficient and cost effective, according to the study authors.

Co-authors of the study are Susan P. Baker, Jurek G. Grabowski, Robert S. Dodd, Dennis F. Shanahan, Margaret W. Lamb and Guohua Li.

“EMS Helicopter Crashes: What Influences Fatal Outcome?” was supported by grants from the Johns Hopkins Center for Injury Research and Policy, Centers for Disease Control and Prevention and National Institutes of Health.

Public Affairs media contacts for the Johns Hopkins Bloomberg School of Public Health: Kenna Lowe or Tim Parsons at 410-955-6878 or paffairs@jhsph.edu.

Kenna Lowe | EurekAlert!
Further information:
http://www.jhsph.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>