Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Darkness More Than Triples EMS Helicopter Crash Fatality Risk


Bad Weather Increases Risk Eight-Fold

Post-crash fires, darkness or bad weather greatly decrease the likelihood of surviving an emergency medical service (EMS) helicopter crash, according to a study by researchers from the Johns Hopkins Bloomberg School of Public Health’s Center for Injury Research and Policy and Johns Hopkins School of Medicine. Improving crashworthiness of helicopters and reducing trips during hazardous conditions can decrease EMS helicopter fatality rates. The study was recently published online by Annals of Emergency Medicine.

“Crashes of EMS helicopters have increased in recent years, raising concern for patients, as well as pilots, paramedics and flight nurses,” said Susan P. Baker, MPH, a professor in the Bloomberg School of Public Health’s Department of Health Policy and Management and Center for Injury Research and Policy. “Our study found that darkness more than triples the risk of fatalities when EMS helicopters crash and that bad weather increases the risk eight-fold. Helicopter EMS programs should recognize these risky conditions and transport patients by air only when the benefit clearly exceeds the risk of the flight.”

The study authors examined National Transportation Safety Board records of EMS helicopter crashes between January 1, 1983, and April 30, 2005. During the 22-year study period, 184 occupants died in 182 EMS helicopter crashes. A majority (77 percent) of crashes occurred when weather conditions required pilots to fly primarily by referencing their instruments rather than using outside visual cues. In darkness, 56 percent of crashes were fatal, as compared with 24 percent of crashes not in darkness. One in four EMS helicopters is likely to crash during 15 years of service. The death rate for EMS flight crew members is 20 times the rate of all U.S. workers.

The researchers also found that 76 percent of the crashes with post-crash fires were fatal. A previous study by Baker and colleagues published in the August 2005 edition of Aviation, Space and Environmental Medicine, revealed that the potential for post-crash fires in survivable crashes was greater in civilian helicopters than in their military counterparts because the standards for civilian fuel systems are not as strict as those for military helicopters.

Additional studies should be conducted to determine which preventive measures—such as equipping pilots with night-vision goggles, reducing night flights by using a protocol to determine which cases absolutely require helicopter transport, using better restraints, energy-absorbing landing gear and seats and crash-resistant fuel systems—are most efficient and cost effective, according to the study authors.

Co-authors of the study are Susan P. Baker, Jurek G. Grabowski, Robert S. Dodd, Dennis F. Shanahan, Margaret W. Lamb and Guohua Li.

“EMS Helicopter Crashes: What Influences Fatal Outcome?” was supported by grants from the Johns Hopkins Center for Injury Research and Policy, Centers for Disease Control and Prevention and National Institutes of Health.

Public Affairs media contacts for the Johns Hopkins Bloomberg School of Public Health: Kenna Lowe or Tim Parsons at 410-955-6878 or

Kenna Lowe | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>