Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolution study tightens human-chimp connection

24.01.2006


Study also finds human evolution slower than apes



Scientists at the Georgia Institute of Technology have found genetic evidence that seems to support a controversial hypothesis that humans and chimpanzees may be more closely related to each other than chimps are to the other two species of great apes – gorillas and orangutans. They also found that humans evolved at a slower rate than apes.
Appearing in the January 23, 2006 issue of the Proceedings of the National Academy of Sciences, biologist Soojin Yi reports that the rate of human and chimp molecular evolution – changes that occur over time at the genetic level – is much slower than that of gorillas and orangutans, with the evolution of humans being the slowest of all.

As species branch off along evolutionary lines, important genetic traits, like the rate of molecular evolution also begin to diverge. They found that the speed of this molecular clock in humans and chimps is so similar, it suggests that certain human-specific traits, like generation time, began to evolve one million years ago - very recently in terms of evolution. The amount of time between parents and offspring is longer in humans than apes. Since a long generation time is closely correlated with the evolution of a big brain, it also suggests that developmental changes specific to humans may also have evolved very recently.



In a large-scale genetic analysis of approximately 63 million base pairs of DNA, the scientists studied the rate at which the base pairs that define the differences between species were incorrectly paired due to errors in the genetic encoding process, an occurrence known as substitution. "For the first time, we’ve shown that the difference in the rate of molecular evolution between humans and chimpanzees is very small, but significant, suggesting that the evolution of human-specific life history traits is very recent," said Yi.

Most biologists believe that humans and chimpanzees had a common ancestor before the evolutionary lines diverged about 5-7 million years ago. According to the analysis, one million years ago the molecular clock in the line that became modern humans began to slow down. Today, the human molecular clock is only 3 percent slower than the molecular clock of the chimp, while it has slowed down 11 percent from the gorilla’s molecular clock.

This slow down in the molecular clock correlates with a longer generation time because substitutions need to be passed to the next generation in order to have any lasting effect on the species,

"A long generation time is an important trait that separates humans from their evolutionary relatives," said Navin Elango, graduate student in the School of Biology and first author of the research paper. "We used to think that apes shared one generation time, but that’s not true. There’s a lot more variation. In our study, we found that the chimpanzee’s generation time is a lot closer to that of humans than it is to other apes."

The results also confirm that there is very little difference in the alignable regions of the human and chimp genomes. Taken together, the study’s findings suggest that humans and chimps are more closely related to each other than the chimps are to the other great apes.

"I think we can say that this study provides further support for the hypothesis that humans and chimpanzees should be in one genus, rather than two different genus’ because we not only share extremely similar genomes, we share similar generation time," said Yi.

Even though the 63 million base pairs they studied is a large sample, it’s still a small part of the genome, Yi said. "If we look at the whole genome, maybe it’s a different story, but there is evidence in the fossil record that this change in generation time occurred very recently, so the genetic evidence and the fossil data seem to fit together quite well so far."

David Terraso | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>