Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spacecraft, heal thyself

23.01.2006


Building spacecraft is a tough job. They are precision pieces of engineering that have to survive in the airless environment of space, where temperatures can swing from hundreds of degrees Celsius to hundreds of degree below zero in moments. Once a spacecraft is in orbit, engineers have virtually no chance of repairing anything that breaks. But what if a spacecraft could fix itself?



Thanks to a new study funded by ESA’s General Studies Programme, and carried out by the Department of Aerospace Engineering, University of Bristol, UK, engineers have taken a step towards that amazing possibility. They took their inspiration from nature.

"When we cut ourselves we don’t have to glue ourselves back together, instead we have a self-healing mechanism. Our blood hardens to form a protective seal for new skin to form underneath," says Dr Christopher Semprimoschnig, a materials scientist at ESA’s European Space Technology Research Centre (ESTEC) in the Netherlands, who oversaw the study.


He imagined such cuts as analogous to the ’wear-and-tear’ suffered by spacecraft. Extremes of temperature can cause small cracks to open in the superstructure, as can impacts by micrometeroids - small dust grains travelling at remarkable speeds of several kilometres per second. Over the lifetime of a mission the cracks build up, weakening the spacecraft until a catastrophic failure becomes inevitable.

The challenge for Semprimoschnig was to replicate the human process of healing small cracks before they can open up into anything more serious. He and the team at Bristol did it by replacing a few percent of the fibres running through a resinous composite material, similar to that used to make spacecraft components, with hollow fibres containing adhesive materials. Ironically, to make the material self-repairable, the hollow fibres had to be made of an easily breakable substance: glass. "When damage occurs, the fibres must break easily otherwise they cannot release the liquids to fill the cracks and perform the repair," says Semprimoschnig.

In humans, the air chemically reacts with the blood, hardening it. In the airless environment of space, alternate mechanical veins have to be filled with liquid resin and a special hardener that leak out and mix when the fibres are broken. Both must be runny enough to fill the cracks quickly and harden before it evaporates.

"We have taken the first step but there is at least a decade to go before this technology finds its way onto a spacecraft," says Semprimoschnig, who believes that larger scale tests are now needed.

The promise of self-healing spacecraft opens up the possibility of longer duration missions. The benefits are two-fold. Firstly, doubling the lifetime of a spacecraft in orbit around Earth would roughly halve the cost of the mission. Secondly, doubling spacecraft lifetimes means that mission planners could contemplate missions to far-away destinations in the Solar System that are currently too risky.

In short, self-healing spacecraft promise a new era of more reliable spacecraft, meaning more data for scientists and more reliable telecommunication possibilities for us all.

Christopher Semprimoschnig | alfa
Further information:
http://www.esa.int/SPECIALS/GSP/SEMQKMMZCIE_0.html

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>