Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global Warming - The Blame Is not with the Plants

19.01.2006


International scientific team reacts to misinterpretation of their research results and provides the correct perspective



In a recent study (Nature, 12 January 2006), scientists from the Max Planck Institute for Nuclear Physics, Utrecht University, Netherlands, and the Department of Agriculture and Rural Development for Northern Ireland, UK, revealed that plants produce the greenhouse gas methane. First estimates indicated that this could account for a significant proportion of methane in the atmosphere. There has been extended media coverage of this work with unfortunately, in many instances, a misinterpretation of the findings. Furthermore, the discovery led to intense speculations on the potential relevance of the findings for reforestation programs in the framework of the Kyoto protocol. These issues need to be put in the right perspective.

The most frequent misinterpretation we find in the media is that emissions of methane from plants are responsible for global warming. As those emissions from plants are a natural source, they have existed long before man’s influence started to impact upon the composition of the atmosphere. It is the anthropogenic emissions which are responsible for the well-documented increasing atmospheric concentrations of methane since pre-industrial times. Emissions from plants thus contribute to the natural greenhouse effect and not to the recent temperature increase known as ‘global warming’. Even if land use practices have altered plant methane emissions, which we did not demonstrate, this would also count as an anthropogenic source, and the plants themselves cannot be deemed responsible.


Furthermore, our discovery led to intense speculation that methane emissions by plants could diminish or even outweigh the carbon storage effect of reforestation programs with important implications for the Kyoto protocol, where such programs are to be used in national carbon dioxide (CO2) reduction strategies. We first stress that our findings are preliminary with regard to the methane emission strength. Emissions most certainly depend on plant type and environmental conditions and more experiments are certainly necessary to quantify the process under natural conditions. As a first rough estimate of the order of magnitude we have taken the global average methane emissions as representative to provide a rough estimate of its potential effect on climate. These estimates (for details, see below) show that methane emissions by plants may slightly diminish the effect of reforestation programs. However, the climatic benefits gained through carbon sequestration by reforestation far exceed the relatively small negative effect, which may reduce the carbon uptake effect by up to 4 per cent. Thus, the potential for reduction of global warming by planting trees is most definitely positive. The fundamental problem still remaining is the global large-scale anthropogenic burning of fossil fuels.

Details of calculations used:

In our study, we have linked global methane emission estimates to plant growth, which is generally quantified as net primary productivity (NPP). On a global basis NPP amounts to ~62 x 1015 g of carbon/yr, which corresponds to an uptake of 227 x 1015 g of CO2/yr. On the emission side, our study suggests annual global methane emissions by plants of 62-236 x 1012 g/yr CH4. Thus, for each kg of CO2 assimilated by a plant roughly 0.25 to 1 to 4 g of CH4 is released. During growth of a new forest, up to 50% of plant tissue is lost again in the short term through decomposition of plant litter of leaves and roots [1]. This then doubles the estimate to 0.5 to 2 g methane emitted per kg of CO2 assimilated and stored in plants for longer periods. Over a 100-year horizon, the global warming potential of methane is ~20 times higher than that of carbon dioxide. Thus, for climate, the benefits gained by reforestation programs would be lessened by between 1 and 4 per cent due to methane emissions from the plants themselves.

Thomas Röckmann1,2, Jack Hamilton3, Frank Keppler2 and Marc Brass1,2
1 Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, The Netherlands
2 Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany
3 Department of Agriculture and Rural Development, Agriculture, Food and Environmental Science Division, Newforge Lane, Belfast BT9 5PX, UK

Original work:

Frank Keppler, John T. G. Hamilton, Marc Brass and Thomas Röckmann
Methane emissions from terrestrial plants under aerobic conditions

Michael Frewin | EurekAlert!
Further information:
http://www.mpg.de

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>