Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tickling ourselves is no laughing matter

19.01.2006


Anticipating our own touch - for example in tickling oneself - reduces its impact, says Queen’s psychologist Dr. Randy Flanagan, a member of the university’s Centre for Neuroscience Studies. This is evidence of an important human adaptation that helps us interact with objects in our environment.



An expert in eye/hand movement, Dr. Flanagan is part of an international team exploring sensory attenuation - the way that we filter out or "cancel" unnecessary information from the world around us.

Their study appears on-line today in the international journal Public Library of Science (PloS) - Biology. Led by Paul Bays of University College London, the team also includes Daniel Wolpert of Cambridge University.


"It’s well-known that you can’t tickle yourself," says Dr. Flanagan. "One explanation is that since all the sensations are completely predictable, we do ’sensory attenuation’ which reduces our touch perception." Because people continually receive a barrage of sensory information, it’s necessary to distinguish between what is caused by our own movements and what is due to changes in the outside world.

"If we try to deal with all the sensory information directed at us at any given time it’s overwhelming," explains Dr. Flanagan. "We can’t focus attention on crucial changes in our environment that aren’t a function of our own motions." Animals in the wild, for example, use sensory cancellation when looking for prey and avoiding predators. They do this, in part, by blocking out changes in sensation that occur because of their own movements.

To study this phenomenon in humans, the research team used a task in which participants tapped, using one (active) index finger on a force sensor located just above the other (passive) index finger. A small motor delivered a tap to the passive finger that occurred at the same time as a tap of the active hand - which simulated tapping onto one’s own finger through a solid object.

Previously the team had shown that people judge self-administered taps to be weaker than those not linked to their own motion.

On unexpected "catch" trials the force sensor was removed, so subjects didn’t hit anything with the active finger. However, they still received a tap to the passive finger. And in these trials, attenuation or cancellation still occurred.

This suggests that sensory cancellation is based on predictive rather than "postdictive" mechanisms, the researchers say. In the catch trials, the brain predicts that a tap will occur and sensory cancellation takes place even though the active finger fails to deliver the tap.

"If sensory cancellation were postdictive and based on an analysis of sensory events after the tap, we would not expect cancellation in the catch trials," he explains. "The brain is constantly predicting the sensory feedback it’s going to receive from our fingertips as we touch things in the world and act on that information."

Research has suggested that a breakdown in this predictive mechanism may underlie certain delusions in schizophrenia. If people fail to adequately filter sensory information arising from self-motion, they may erroneously attribute it to external causes, says Dr. Flanagan.

Funding for the study came from the Natural Sciences and Engineering Research Council of Canada, the Wellcome Trust, the Human Frontier Science Program and the Riken Brain Science Institute.

To learn more about Research at Queen’s ...

Contacts:

Nancy Dorrance, Queen’s News & Media Services, 613.533.2869

Therese Greenwood, Queen’s News & Media Services, 613.533.6907

Nancy Dorrance | EurekAlert!
Further information:
http://www.queensu.ca

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>