Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Finds Evolution Doesn’t Always Favor Bigger Animals

18.01.2006


Biologists have long believed that bigger is better when it comes to body size, since many lineages of animals, from horses to dinosaurs, have evolved into larger species over time.


Photo shows increase in body size of deep-sea ostracode Poseidonamicus from 40 million years ago to 900,000 years ago. Credit: Gene Hunt, UCSD



But a study published this week by two biologists at the University of California, San Diego in an early online edition of the Proceedings of the National Academy of Sciences suggests that maxim, known as “Cope’s Rule,” may be only partly true.

The scientists found that populations of tiny crustaceans retrieved from deep-sea sediments over the past 40 million years grew bigger and evolved into larger species, as might be predicted from Cope’s Rule. However, the changes in the sizes of these clam-like crustaceans commonly known as ostracodes —from the genus Poseidonamicus — increased only when the global ocean temperature cooled. When temperatures remained stable, not much happened to body size.


“These data show a very nice correlation between temperature and body size,” said Kaustuv Roy, a professor of biology at UCSD and a coauthor of the paper.

“Although not the most glamorous of fossils, deep-sea ostracodes are very useful for this question because they have a rich fossil record, which allows us to reconstruct the evolution of body size in great detail,” said Gene Hunt, who designed and conducted the study while postdoctoral fellow at UCSD.

“Scientists have been interested in how body size evolves for a long time, but there is a lot of uncertainty about what factors are most important in determining whether animals get bigger or smaller over time,” added Hunt, now a curator at the National Museum of Natural History in Washington, DC.

The two scientists said their data suggest that Cope’s Rule—named for Edward Cope, a 19 th century American paleontologist who claimed the fossil record showed that lineages became larger over time—may simply be an evolutionary manifestation of Bergmann’s Rule, which holds that animals increase in mass in colder environments.

Biologists had long assumed that Bergmann’s Rule—named after the 19 th century German biologist Christian Bergmann—reflected the adaptation of warm-blooded animals to become larger when they move in colder environments. The reason: Bigger animals have smaller surface to volume ratios and can more effectively conserve heat in cold environments. Similarly, smaller animals with larger surface to volume ratios are better adapted to warmer environments where they can more effectively dissipate heat.

However, this simple relationship doesn’t explain why ostracodes and other cold-blooded creatures that do not regulate their internal body temperatures, such as mollusks to turtles, also follow this rule.

“It is a bit of a puzzle why Bergmann’s Rule holds in cold-blooded animals like ostracodes,” said Hunt.

Hunt and Roy found that as ocean temperatures declined by some 10 degrees centigrade, from 40 million years ago to the present day, the overall size of the deep-sea ostracode Poseidonamicus dramatically increased.

“It’s not just that the small species got replaced by a larger species,” said Roy. “The same species, the same lineage got bigger over time.”

In addition, the biologists discovered that the body size increases in nine species of ostracodes that evolved over that 40 million year span were commensurate with the change expected given how much the ocean temperatures decreased over this time and how body sizes of living ostracodes vary with temperature. On average, for every degree centigrade of climatic cooling, each of the species of Poseidonamicus increased in length by about 29 micrometers.

Hunt and Roy said biologists are uncertain what may be triggering this biological response to larger size from cool environments. Nevertheless, the UCSD study is important because it establishes a firm link between climatic change and the body size of organisms, paving the way for a better understanding of the evolution of body size in fossil organisms as well as in environments that are now being impacted by global warming.

“There’s still a huge debate over what drives Cope’s Rule, but our study shows that climate change can undoubtedly play an important role” said Roy.

For much of the past 40 million years, global climate has been exhibiting a steady cooling trend. But within the last century, as greenhouse emissions have accumulated in our atmosphere, temperatures have rapidly warmed.

“If you look at most of life today, they’ve all been adapted to a world getting gradually cooler,” said Roy. “But our future is destined to be significantly warmer. What are animals going to look like when everything must adapt to a warmer world? Size correlates with many aspects of the biology of an animal so changes in size are likely to translate into substantial ecological changes. A better prediction of the biological effects of future global change requires that, among other things, we understand how climate change shapes body size evolution.”

The study was supported by a grant from the National Science Foundation.

Kim McDonald | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>