Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study links Alzheimer’s disease to abnormal cell division

18.01.2006


A new study in mice suggests that Alzheimer’s disease (AD) may be triggered when adult neurons try to divide. The finding helps researchers understand what goes wrong in the disease and may lead to new ways of treating it. The study was funded in part by the National Institute of Neurological Disorders and Stroke (NINDS), part of the National Institutes of Health, and appears in the January 18, 2006 issue of The Journal of Neuroscience.*



For unknown reasons, nerve cells (neurons) affected by AD and many other neurodegenerative diseases often start to divide before they die. The new study shows that, in animal models of AD, this abnormal cell division starts long before amyloid plaques or other markers of the disease appear. Cell division occurs through a process called the cell cycle. "If you could stop cell cycling, you might be able to stop neurons from dying prematurely. This could be a fresh approach to therapy for Alzheimer’s and other diseases, including stroke, amyotrophic lateral sclerosis [also known as Lou Gehrig’s disease], and HIV dementia," says Karl Herrup, Ph.D., of Case Western Reserve University in Cleveland, who led the study.

The researchers compared the brains of three different mouse models of AD to brains from normal mice, looking specifically for markers of cell cycling. They found that, in the AD mouse models, cell cycle-related proteins appeared in neurons 6 months before the first amyloid plaques or disease-related immune reactions developed in the brain. Many of the neurons also had increased numbers of chromosomes, which is typical of cells that have begun to divide. These changes were not seen in normal mice. The regions of the brain most affected by the neuronal cell cycling were the cortex and the hippocampus – the same regions most affected in AD. The cortex is important for thought and reasoning, while the hippocampus plays a key role in learning and memory. Some parts of the brainstem also showed evidence of cell cycling.


While the cell cycling appeared to be necessary for neurons to die, it was not an immediate cause of cell death in the mouse models of AD. Instead, the affected neurons appeared to live for many months in a near-functional state, with the mice showing only mild behavioral changes during that time. This suggests that another type of cellular problem, still unidentified, must damage the neurons in order for them to die.

The findings shed new light on the theory that the accumulation of amyloid beta in the brain causes the neuron death in AD. Because the abnormal cell cycling begins months before the formation of amyloid plaques, it is unlikely that the plaques themselves trigger the disease process. However, tiny clumps made up of several amyloid beta molecules (called micro-molecular aggregates) form before the plaques and may trigger the disease. Since the three mouse models tested in this study all had mutations in the gene that codes for amyloid precursor protein, the similarity between affected brain regions in these mice and in people with AD also supports the amyloid hypothesis.

While previous studies have linked AD to abnormal cell cycling, this is the first study to examine the link using standard mouse models of AD. The results indicate that the mice, which do not develop neurofibrillary tangles or the severe behavioral symptoms of AD, are accurate models of the early cellular processes that lead to the disease. "The cell cycle markers mimic the human situation rather well," says Dr. Herrup. "This opens a range of new experimental possibilities using the cell cycle events as indicators of neuronal distress."

Dr. Herrup and his colleagues are now trying to determine if feeding the mouse models the drug ibuprofen can stop abnormal cell cycling in neurons and halt neurodegeneration. Ibuprofen is an anti-inflammatory drug that reduces production of amyloid beta, and some studies have suggested that it may reduce the risk of AD. The researchers are also planning additional studies to identify why neurons start to divide when they are diseased and why entering the cell cycle appears to trigger cell death.

Natalie Frazin | EurekAlert!
Further information:
http://www.ninds.nih.gov/

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>