Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study links Alzheimer’s disease to abnormal cell division

18.01.2006


A new study in mice suggests that Alzheimer’s disease (AD) may be triggered when adult neurons try to divide. The finding helps researchers understand what goes wrong in the disease and may lead to new ways of treating it. The study was funded in part by the National Institute of Neurological Disorders and Stroke (NINDS), part of the National Institutes of Health, and appears in the January 18, 2006 issue of The Journal of Neuroscience.*



For unknown reasons, nerve cells (neurons) affected by AD and many other neurodegenerative diseases often start to divide before they die. The new study shows that, in animal models of AD, this abnormal cell division starts long before amyloid plaques or other markers of the disease appear. Cell division occurs through a process called the cell cycle. "If you could stop cell cycling, you might be able to stop neurons from dying prematurely. This could be a fresh approach to therapy for Alzheimer’s and other diseases, including stroke, amyotrophic lateral sclerosis [also known as Lou Gehrig’s disease], and HIV dementia," says Karl Herrup, Ph.D., of Case Western Reserve University in Cleveland, who led the study.

The researchers compared the brains of three different mouse models of AD to brains from normal mice, looking specifically for markers of cell cycling. They found that, in the AD mouse models, cell cycle-related proteins appeared in neurons 6 months before the first amyloid plaques or disease-related immune reactions developed in the brain. Many of the neurons also had increased numbers of chromosomes, which is typical of cells that have begun to divide. These changes were not seen in normal mice. The regions of the brain most affected by the neuronal cell cycling were the cortex and the hippocampus – the same regions most affected in AD. The cortex is important for thought and reasoning, while the hippocampus plays a key role in learning and memory. Some parts of the brainstem also showed evidence of cell cycling.


While the cell cycling appeared to be necessary for neurons to die, it was not an immediate cause of cell death in the mouse models of AD. Instead, the affected neurons appeared to live for many months in a near-functional state, with the mice showing only mild behavioral changes during that time. This suggests that another type of cellular problem, still unidentified, must damage the neurons in order for them to die.

The findings shed new light on the theory that the accumulation of amyloid beta in the brain causes the neuron death in AD. Because the abnormal cell cycling begins months before the formation of amyloid plaques, it is unlikely that the plaques themselves trigger the disease process. However, tiny clumps made up of several amyloid beta molecules (called micro-molecular aggregates) form before the plaques and may trigger the disease. Since the three mouse models tested in this study all had mutations in the gene that codes for amyloid precursor protein, the similarity between affected brain regions in these mice and in people with AD also supports the amyloid hypothesis.

While previous studies have linked AD to abnormal cell cycling, this is the first study to examine the link using standard mouse models of AD. The results indicate that the mice, which do not develop neurofibrillary tangles or the severe behavioral symptoms of AD, are accurate models of the early cellular processes that lead to the disease. "The cell cycle markers mimic the human situation rather well," says Dr. Herrup. "This opens a range of new experimental possibilities using the cell cycle events as indicators of neuronal distress."

Dr. Herrup and his colleagues are now trying to determine if feeding the mouse models the drug ibuprofen can stop abnormal cell cycling in neurons and halt neurodegeneration. Ibuprofen is an anti-inflammatory drug that reduces production of amyloid beta, and some studies have suggested that it may reduce the risk of AD. The researchers are also planning additional studies to identify why neurons start to divide when they are diseased and why entering the cell cycle appears to trigger cell death.

Natalie Frazin | EurekAlert!
Further information:
http://www.ninds.nih.gov/

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Spinning rugby balls: The rotation of the most massive galaxies

23.05.2018 | Physics and Astronomy

Raiding the rape field

23.05.2018 | Agricultural and Forestry Science

Turning entanglement upside down

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>