Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insight into the Regulation of a Key Tumor Suppressor

17.01.2006


A new study published in the online open-access journal PLoS Biology explores a longstanding paradox in the regulation of a key tumor suppressor protein called p53. Min Hu, Yigong Shi, and their colleagues applied structural and mutational approaches to shed light on the regulation of a crucial regulatory pathway. Mutations that disable p53, which also plays a crucial role in regulating cell growth, are the most common mutations in many human cancers.



When cell damage occurs, p53 activates one of several stress-induced genes. In healthy cells, p53 levels are minimized by proteins that mark the protein for degradation such as MDM2. Intriguingly, by promoting the transcription of the MDM2 protein, p53 is responsible for its own regulation. Another protein that also plays a role in p53 regulation is an enzyme called HAUSP (herpesvirus-associated ubiquitin-specific protease) which can bind to p53, stabilize the protein, and promote cell death and cell growth arrest. But HAUSP can also stabilize MDM2. These seemingly contradictory actions led the researchers to wonder exactly what state p53 is left in once MDM2 and HAUSP have finished competing with one another.

Hu et al. show that both p53 and MDM2 bind to the same location on the HAUSP protein domain in a mutually exclusive manner. They also show that a conserved short amino acid signature appears to be responsible for this binding. Analysis of the molecular basis of their differential binding revealed that MDM2 binds HAUSP more frequently. And because MDM2 consistently formed stable complexes with HAUSP despite the presence of ten times more p53 peptides, it was clear that MDM2 binds to the HAUSP with a higher affinity. This suggests how HAUSP may regulate the critically important p53–MDM2 pathway.


This study suggests that HAUSP likely targets MDM2 under normal physiological conditions, and provides a valuable framework for probing the function of the p53–MDM2 pathway. The differential binding properties of p53 and MDM2 also suggest promising drug-screening targets. Given MDM2’s negative impact on p53, it may be that inhibiting HAUSP, and thus MDM2, could counteract mutations that interfere with p53 function, and give this tumor suppressor the boost it needs to do its job.

Citation : Hu M, Gu L, Li M, Jeffrey PD, Gu W, et al. (2006) Structural basis of competitive recognition of p53 and MDM2 by HAUSP/USP7: Implications for the regulation of the P53–MDM2 pathway. PLoS Biol 4(2): e27.

CONTACT:
Yigong Shi
Princeton University
Washington Road
Princeton, NJ USA 08544
+1-609-258-6071
YShi@molbio.Princeton.edu

Paul Ocampo | alfa
Further information:
http://dx.doi.org/10.1371/journal.pbio.0040027
http://www.plos.org

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>