Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Insight into the Regulation of a Key Tumor Suppressor


A new study published in the online open-access journal PLoS Biology explores a longstanding paradox in the regulation of a key tumor suppressor protein called p53. Min Hu, Yigong Shi, and their colleagues applied structural and mutational approaches to shed light on the regulation of a crucial regulatory pathway. Mutations that disable p53, which also plays a crucial role in regulating cell growth, are the most common mutations in many human cancers.

When cell damage occurs, p53 activates one of several stress-induced genes. In healthy cells, p53 levels are minimized by proteins that mark the protein for degradation such as MDM2. Intriguingly, by promoting the transcription of the MDM2 protein, p53 is responsible for its own regulation. Another protein that also plays a role in p53 regulation is an enzyme called HAUSP (herpesvirus-associated ubiquitin-specific protease) which can bind to p53, stabilize the protein, and promote cell death and cell growth arrest. But HAUSP can also stabilize MDM2. These seemingly contradictory actions led the researchers to wonder exactly what state p53 is left in once MDM2 and HAUSP have finished competing with one another.

Hu et al. show that both p53 and MDM2 bind to the same location on the HAUSP protein domain in a mutually exclusive manner. They also show that a conserved short amino acid signature appears to be responsible for this binding. Analysis of the molecular basis of their differential binding revealed that MDM2 binds HAUSP more frequently. And because MDM2 consistently formed stable complexes with HAUSP despite the presence of ten times more p53 peptides, it was clear that MDM2 binds to the HAUSP with a higher affinity. This suggests how HAUSP may regulate the critically important p53–MDM2 pathway.

This study suggests that HAUSP likely targets MDM2 under normal physiological conditions, and provides a valuable framework for probing the function of the p53–MDM2 pathway. The differential binding properties of p53 and MDM2 also suggest promising drug-screening targets. Given MDM2’s negative impact on p53, it may be that inhibiting HAUSP, and thus MDM2, could counteract mutations that interfere with p53 function, and give this tumor suppressor the boost it needs to do its job.

Citation : Hu M, Gu L, Li M, Jeffrey PD, Gu W, et al. (2006) Structural basis of competitive recognition of p53 and MDM2 by HAUSP/USP7: Implications for the regulation of the P53–MDM2 pathway. PLoS Biol 4(2): e27.

Yigong Shi
Princeton University
Washington Road
Princeton, NJ USA 08544

Paul Ocampo | alfa
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>