Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify target for therapeutic drugs to fight most common adult brain cancer

16.01.2006


A research team at UT Southwestern Medical Center has discovered a cell-signaling mechanism instrumental in the most common brain cancer in adults.



The study, published in today’s issue of the journal Cancer Research, opens an avenue to develop therapeutic drugs to target the epidermal growth factor receptor genes that play a major role in the development of deadly brain tumors, researchers said.

The median survival of patients with glioblastoma multiforme (GBM), a cancer of the supportive tissue of the brain, currently is about one year after diagnosis with the best treatments available, said Dr. Amyn Habib, assistant professor of neurology at UT Southwestern and the study’s senior author. GBM, which accounts for 60 percent of brain tumors in adults older than 50 years, can infiltrate the brain extensively and sometimes becomes enormous before turning symptomatic.


Researchers have known for years that tumor cells proliferate out of control by a mechanism characterized by an abnormally high number of copies of the epidermal growth factor receptor gene (EGFR). This overexpression of EGFR, Dr. Habib said, is a striking feature of glioblastoma multiforme, present in 40 percent to 50 percent of tumors and results in an uncontrolled multiplication of both normal EGFR and a mutant form called EGFRvIII.

While studying human brain tumor tissue and human brain tumor cells from cell lines grown in the laboratory, Dr. Habib and his colleagues discovered that EGFRvIII generates a unique pattern of signaling (distinct from normal EGFR) that causes brain cancer cells in GBM to grow and multiply unchecked.

"The better we understand the signaling mechanisms of the normal and the mutant EGFR, the better we can manipulate or control them," Dr. Habib said. "Our findings suggest that you have to target both the mutant and the normal EGFR based on the mechanism we described."

Current standard treatment of GBM consists of surgical removal of the tumor, followed by radiation and chemotherapy. Dr. Habib said he hoped the findings gained from the new study could eventually lead to therapeutic drugs that destroy brain cancer cells and spare healthy cells.

Other UT Southwestern researchers on the study were Dr. Deepti Ramnarain, postdoctoral researcher in neurology and lead author; Dr. Seongmi Park, postdoctoral researcher in neurology; Dr. Kimmo Hatanpaa; assistant professor of pathology; Dr. Jack Raisanen, associate professor of pathology; Dr. Raheela Ashfaq, professor of pathology; and Shane Scoggin, research assistant in the Harold C. Simmons Comprehensive Cancer Center. Researchers from Beth Israel Deaconess Medical Center and Harvard Medical School also participated.

Toni Heinzl | EurekAlert!
Further information:
http://www.utsouthwestern.edu
http://www.utsouthwestern.edu/findfac/professional/0,2356,61448,00.html
http://www.utsouthwestern.edu/receivenews

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>