Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yale study explains complex infection fighting mechanism

11.01.2006


Yale School of Medicine researchers report in Nature Immunology how infection fighting mechanisms in the body can distinguish between a virus and the healthy body, shedding new light on auto immune disorders.



The infection fighters in question, toll-like receptors (TLRs), function by recognizing viral, bacterial or fungal pathogens and then sending signals throughout the immune system announcing that an infection has occurred.

Viruses change features to avoid being recognized, thereby triggering the immune response. But TLRs recognize the highly conserved features of pathogens, features that are often difficult to change without affecting the punch of the pathogen, said lead author of the study, Gregory Barton of the University of California at Berkeley who performed the research while in the Section of Immunobiology at Yale School of Medicine.


He said that one exception to the general view of how TLRs work is the way TLRs recognize viruses since viruses lack the unique features of bacterial or fungal pathogens. Because of this, the immune system has had to find other ways to recognize viral infection.

"In particular, the DNA or RNA that comprise viral genomes can stimulate certain TLRs," Barton said. "This strategy comes at an enormous cost. By targeting the DNA or RNA of viruses, the immune system runs the risk of accidentally recognizing its own DNA and RNA as foreign and inappropriately making an immune response against itself. This autoimmune condition is called systemic lupus erythematosus or SLE, and can be devastating for those unfortunate enough to suffer from it."

The work of senior author Ruslan Medzhitov, professor of immunobiology, and his colleagues, has focused on trying to understand how recognition of a body’s own DNA is avoided by those TLRs involved in viral nucleic acid recognition.

"We have known for some time that those TLRs are sequestered in specialized compartments within cells," Barton said. "The significance of this localization, however, was unclear. We have now shown that the localization is, in fact, a key factor for the avoidance of self DNA recognition as well as for the optimal recognition of viral DNA."

He said the research group was able to construct a modified version of one of the TLRs, moving it from the specialized internal compartment within the cell to the cell surface. This engineered version of the TLR had enhanced recognition of self DNA, yet poor recognition of viral DNA, proving that isolation of certain TLRs within these specialized intracellular compartments is an important checkpoint in maintaining the balance between viral and self nucleic acid recognition.

"This work has potential implications for our understanding of the molecular basis of lupus (SLE)," Barton said. "It is possible that certain mutations in TLRs will affect their localization within the cell and give them better access to self nucleic acid. Understanding how this balance is maintained and how it can go wrong is an important step in the fight against autoimmune disorders."

Jacqueline Weaver | EurekAlert!
Further information:
http://www.yale.edu

More articles from Studies and Analyses:

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Disarray in the brain
18.12.2017 | Universität zu Lübeck

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>