Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genes’ influence on common drugs may affect health-care quality, cost

09.01.2006


Chances are good that a medication you take is one of several drugs that can be affected by genetic factors, according to researchers at Washington University School of Medicine in St. Louis and the St. Louis College of Pharmacy. They found that 29 percent of patients seen at local primary-care offices had taken at least one of 16 drugs that can cause adverse reactions in genetically susceptible people.



Finding that so many primary-care patients use such medications suggests that pharmacogenetics—the study of the interplay between genes and drugs—has the potential to benefit a large portion of the population, according to the researchers. Applying information from pharmacogenetics to primary-care practices could reduce the incidence of adverse reactions and optimize treatments, according to the study, published in the January 2006 issue of the journal Pharmacogenomics.

"Until now, researchers looking at the role of genetic variation in drug effects have focused mainly on toxic drugs used by specialists treating cancer or HIV infection," says Howard L. McLeod, Pharm.D., director of the pharmacology core at the Siteman Cancer Center at Washington University School of Medicine and Barnes-Jewish Hospital. "We knew that some of the drugs commonly used in the family practice setting can cause adverse reactions in people who have certain genetic variations, so we measured just how often these drugs are used."


The study found that of the 607 outpatients surveyed at three primary-care sites in the metropolitan St. Louis area, 174 were on a drug commonly associated with severe side effects. Among these drugs are fluoxetine (Prozac™), metoprolol (a beta-blocker), diltiazem (used to treat high blood pressure), and warfarin (an anticoagulant).

Each of these drugs is metabolized by genes known to vary within the population. Genetic variations that change the properties of enzymes that break down drugs or mark them for excretion can cause adverse drug reactions.

Potentially harmful reactions to the medications examined in this study include gastrointestinal bleeding, cerebrovascular hemorrhages, kidney impairment, dizziness, low blood pressure and slowed heart beat. The number and severity of adverse reactions to the drugs surveyed was not measured in this study; however, a 1998 study ranked adverse drug reactions as among the top ten leading causes of death in the United States.

Other genetic variations in the population are known to alter proteins that transport drugs or change cellular mechanisms targeted by drugs, rendering the drugs ineffective. While not leading to adverse reactions, these genetic factors can also affect health care.

"We think it’s likely that using pharmacogenetics in the primary-care setting can reduce health care costs," says McLeod, who is also professor of medicine, of genetics, and of molecular biology and pharmacology at the School of Medicine. "The information could help family physicians make better decisions about the right drugs and dosages to prescribe for their patients, making it possible to avoid unnecessary prescriptions and to minimize the costs of hospital treatments for adverse reactions."

In an editorial in the same journal, Deepak Voora, M.D., chief medical resident, and Brian F. Gage, M.D., associate professor of medicine, assert that guidance from primary-care physicians will be important to winning patients’ acceptance of the genetic testing necessary to apply pharmacogenetics to family care practice.

"The primary-care physician is the main advocate for the patient and who patients will look to for advice about pharmacogenetics testing," Voora says. "The way they handle pharmacogenetic information can alleviate patients’ fears concerning privacy and access to medical records by employers and insurance agencies."

Gwen Ericson | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>