Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UCSD team creates model for genetic brain syndrome


Researchers at the University of California, San Diego (UCSD) School of Medicine took a step closer to understanding the basis of a severe epilepsy and mental retardation syndrome with work published in the January 5, 2006 issue of the journal Neuron.
Joseph Gleeson, M.D., Director of the Neurogenetics Laboratory at the UCSD School of Medicine and associate professor in the Department of Neurosciences, and his research team have developed a mouse model for a severe brain disorder in newborn children called lissencephaly, or "smooth brain."

"This is the first study to establish a link between the human and mouse disease that clearly shows we can model this condition in the lab," said Gleeson. "This study will allow us to begin to better understand what goes wrong in lissencephaly, and to use this mouse to figure out why children with this disease develop seizures and mental retardation."

It had been known that children with a genetic alteration in a gene called doublecortin suffer from epilepsy and mental retardation due to a defect in how the neuronal stem cells are positioned within the cerebral cortex. In the normal brain, neurons are born – adjacent to fluid-filled cavities deep within the developing brain – during the third and fourth month of gestation. Then they must migrate to reach their proper position within the six-layered cortex. When this migration is defective and neurons stop short of their proper destination, there is an absence of the normal grooves and ridges that characterize the brain in high mammals, including mice. Only four, instead of six, layers of cortex are formed, and the cerebral cortex of these patients lacks most or all of the hills and valleys of the normal human brain.

Gleeson and colleagues previously showed that mutations in the doublecortin gene account for nearly 20 percent of lissencephaly cases in humans. However, previous research by his lab and others yielded conflicting results about the nature of this condition, because researchers had failed to convincingly show in laboratory mice that a similar condition resulted from genetic alteration of the doublecortin gene.

In this study, UCSD team removed not one, but two genes from the mouse. This included both the doublecortin gene and a closely related gene with a similar structure known as doublecortin-like kinase. When both genes were removed, the laboratory mice showed features similar to those expected in human lissencephaly. Neuronal stem cells failed to send progeny cells to the correct position within the brain. As a result, the cerebral cortex did not show the normal six-layered structure characteristic of the mammalian brain.

"This study shows that brain development in mice is less susceptible to genetic deletions than in humans, because there is a redundant mechanism that fills in when just one gene is missing" said Gleeson. "The human brain is one of the most complex structures we know of, and evolution has been working hard to make the human brain over the past million years. It is not surprising that the human brain is more susceptible to genetic variation than the brain of a laboratory mouse."

Debra Kain | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>