Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD team creates model for genetic brain syndrome

05.01.2006


Researchers at the University of California, San Diego (UCSD) School of Medicine took a step closer to understanding the basis of a severe epilepsy and mental retardation syndrome with work published in the January 5, 2006 issue of the journal Neuron.
Joseph Gleeson, M.D., Director of the Neurogenetics Laboratory at the UCSD School of Medicine and associate professor in the Department of Neurosciences, and his research team have developed a mouse model for a severe brain disorder in newborn children called lissencephaly, or "smooth brain."

"This is the first study to establish a link between the human and mouse disease that clearly shows we can model this condition in the lab," said Gleeson. "This study will allow us to begin to better understand what goes wrong in lissencephaly, and to use this mouse to figure out why children with this disease develop seizures and mental retardation."


It had been known that children with a genetic alteration in a gene called doublecortin suffer from epilepsy and mental retardation due to a defect in how the neuronal stem cells are positioned within the cerebral cortex. In the normal brain, neurons are born – adjacent to fluid-filled cavities deep within the developing brain – during the third and fourth month of gestation. Then they must migrate to reach their proper position within the six-layered cortex. When this migration is defective and neurons stop short of their proper destination, there is an absence of the normal grooves and ridges that characterize the brain in high mammals, including mice. Only four, instead of six, layers of cortex are formed, and the cerebral cortex of these patients lacks most or all of the hills and valleys of the normal human brain.

Gleeson and colleagues previously showed that mutations in the doublecortin gene account for nearly 20 percent of lissencephaly cases in humans. However, previous research by his lab and others yielded conflicting results about the nature of this condition, because researchers had failed to convincingly show in laboratory mice that a similar condition resulted from genetic alteration of the doublecortin gene.

In this study, UCSD team removed not one, but two genes from the mouse. This included both the doublecortin gene and a closely related gene with a similar structure known as doublecortin-like kinase. When both genes were removed, the laboratory mice showed features similar to those expected in human lissencephaly. Neuronal stem cells failed to send progeny cells to the correct position within the brain. As a result, the cerebral cortex did not show the normal six-layered structure characteristic of the mammalian brain.

"This study shows that brain development in mice is less susceptible to genetic deletions than in humans, because there is a redundant mechanism that fills in when just one gene is missing" said Gleeson. "The human brain is one of the most complex structures we know of, and evolution has been working hard to make the human brain over the past million years. It is not surprising that the human brain is more susceptible to genetic variation than the brain of a laboratory mouse."

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>