Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD team creates model for genetic brain syndrome

05.01.2006


Researchers at the University of California, San Diego (UCSD) School of Medicine took a step closer to understanding the basis of a severe epilepsy and mental retardation syndrome with work published in the January 5, 2006 issue of the journal Neuron.
Joseph Gleeson, M.D., Director of the Neurogenetics Laboratory at the UCSD School of Medicine and associate professor in the Department of Neurosciences, and his research team have developed a mouse model for a severe brain disorder in newborn children called lissencephaly, or "smooth brain."

"This is the first study to establish a link between the human and mouse disease that clearly shows we can model this condition in the lab," said Gleeson. "This study will allow us to begin to better understand what goes wrong in lissencephaly, and to use this mouse to figure out why children with this disease develop seizures and mental retardation."


It had been known that children with a genetic alteration in a gene called doublecortin suffer from epilepsy and mental retardation due to a defect in how the neuronal stem cells are positioned within the cerebral cortex. In the normal brain, neurons are born – adjacent to fluid-filled cavities deep within the developing brain – during the third and fourth month of gestation. Then they must migrate to reach their proper position within the six-layered cortex. When this migration is defective and neurons stop short of their proper destination, there is an absence of the normal grooves and ridges that characterize the brain in high mammals, including mice. Only four, instead of six, layers of cortex are formed, and the cerebral cortex of these patients lacks most or all of the hills and valleys of the normal human brain.

Gleeson and colleagues previously showed that mutations in the doublecortin gene account for nearly 20 percent of lissencephaly cases in humans. However, previous research by his lab and others yielded conflicting results about the nature of this condition, because researchers had failed to convincingly show in laboratory mice that a similar condition resulted from genetic alteration of the doublecortin gene.

In this study, UCSD team removed not one, but two genes from the mouse. This included both the doublecortin gene and a closely related gene with a similar structure known as doublecortin-like kinase. When both genes were removed, the laboratory mice showed features similar to those expected in human lissencephaly. Neuronal stem cells failed to send progeny cells to the correct position within the brain. As a result, the cerebral cortex did not show the normal six-layered structure characteristic of the mammalian brain.

"This study shows that brain development in mice is less susceptible to genetic deletions than in humans, because there is a redundant mechanism that fills in when just one gene is missing" said Gleeson. "The human brain is one of the most complex structures we know of, and evolution has been working hard to make the human brain over the past million years. It is not surprising that the human brain is more susceptible to genetic variation than the brain of a laboratory mouse."

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>