Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

History of human cannibalism eats away at researchers

05.01.2006


New study challenges previous reports of cannibalism as a worldwide selective force



In a new study published by the journal Genome Research, a team of scientists reports that ’mad cow’-like diseases have not been a major force in human history, nor have been cannibalistic rituals that are known to be associated with disease transmission. Prof. Jaume Bertranpetit, a scientist at the Universitat Pompeu Fabra, and his colleagues used a fresh set of genetic data to show that balancing selection associated with cannibalism has not been a major selective driving force on the prion protein gene, as has recently been proposed. Their work also has important scientific implications for researchers using a specific class of DNA markers called SNPs (single nucleotide polymorphisms) to examine genetic associations with diseases or to evaluate historical patterns of human migration.

The prion protein gene (PRNP) encodes a protein that can abnormally fold and amass in brain tissues to cause fatal neurodegenerative diseases such as mad cow disease. These diseases are cumulatively known as transmissible spongiform encephalopathies (TSEs) and in humans, include CJD (Creutzfeldt-Jakob disease) and kuru. Kuru is confined to a human population in Papua-New Guinea and is transmitted by cannibalism at ritualistic mortuary feasts.


A high-profile study published nearly three years ago suggested that individuals who were heterozygous for a common polymorphism in the PRNP gene were relatively resistant to the disease. Over time, homozygotes who participated in the cannibalistic rituals purportedly diminished in numbers due to their increased susceptibility to kuru. This indicated that cannibalism conferred an effect of balancing selection on the PRNP gene throughout human history.

Bertranpetit and his colleagues sequenced 2,378 base pairs of the PRNP gene in 174 individuals; in addition, they genotyped two SNPs (or single nucleotide polymorphisms) from the PRNP gene in 1000 individuals from populations worldwide. They identified 28 different haplotypes – or combinations of DNA variants – in the PRNP gene and used this data to assess the ages of the mutations, to identify geographic patterns of variation, and to evaluate selective forces that have potentially influenced these patterns.

"In contrast to the previous study, which concluded that variation in the PRNP gene was strongly skewed toward intermediate frequency variants, our results showed that there was, in fact, a deficit of intermediate frequency variants," says Bertranpetit. "Our results are consistent with a complex history of episodic or fluctuating selection, including positive selection, purifying selection, and possibly even short periods of balancing selection."

On a more technical note, the study cautions researchers involved in SNP-based population genetics studies. The work is one of the first to empirically demonstrate how SNP ascertainment can introduce a strong bias in population genetics studies and severely affect the conclusions. Bertranpetit and his colleagues point out that at a time when a flood of ascertained SNP data is being generated, it is essential that SNP ascertainment be taken into consideration in data analyses.

The first author on the study is Dr. Marta Soldevila, who completed her Ph.D. at the Universitat Pompeu Fabra and performed a substantial part of the sequencing work at DeCODE Genetics (Reykjavik, Iceland).

Maria Smit | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>