Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

History of human cannibalism eats away at researchers

05.01.2006


New study challenges previous reports of cannibalism as a worldwide selective force



In a new study published by the journal Genome Research, a team of scientists reports that ’mad cow’-like diseases have not been a major force in human history, nor have been cannibalistic rituals that are known to be associated with disease transmission. Prof. Jaume Bertranpetit, a scientist at the Universitat Pompeu Fabra, and his colleagues used a fresh set of genetic data to show that balancing selection associated with cannibalism has not been a major selective driving force on the prion protein gene, as has recently been proposed. Their work also has important scientific implications for researchers using a specific class of DNA markers called SNPs (single nucleotide polymorphisms) to examine genetic associations with diseases or to evaluate historical patterns of human migration.

The prion protein gene (PRNP) encodes a protein that can abnormally fold and amass in brain tissues to cause fatal neurodegenerative diseases such as mad cow disease. These diseases are cumulatively known as transmissible spongiform encephalopathies (TSEs) and in humans, include CJD (Creutzfeldt-Jakob disease) and kuru. Kuru is confined to a human population in Papua-New Guinea and is transmitted by cannibalism at ritualistic mortuary feasts.


A high-profile study published nearly three years ago suggested that individuals who were heterozygous for a common polymorphism in the PRNP gene were relatively resistant to the disease. Over time, homozygotes who participated in the cannibalistic rituals purportedly diminished in numbers due to their increased susceptibility to kuru. This indicated that cannibalism conferred an effect of balancing selection on the PRNP gene throughout human history.

Bertranpetit and his colleagues sequenced 2,378 base pairs of the PRNP gene in 174 individuals; in addition, they genotyped two SNPs (or single nucleotide polymorphisms) from the PRNP gene in 1000 individuals from populations worldwide. They identified 28 different haplotypes – or combinations of DNA variants – in the PRNP gene and used this data to assess the ages of the mutations, to identify geographic patterns of variation, and to evaluate selective forces that have potentially influenced these patterns.

"In contrast to the previous study, which concluded that variation in the PRNP gene was strongly skewed toward intermediate frequency variants, our results showed that there was, in fact, a deficit of intermediate frequency variants," says Bertranpetit. "Our results are consistent with a complex history of episodic or fluctuating selection, including positive selection, purifying selection, and possibly even short periods of balancing selection."

On a more technical note, the study cautions researchers involved in SNP-based population genetics studies. The work is one of the first to empirically demonstrate how SNP ascertainment can introduce a strong bias in population genetics studies and severely affect the conclusions. Bertranpetit and his colleagues point out that at a time when a flood of ascertained SNP data is being generated, it is essential that SNP ascertainment be taken into consideration in data analyses.

The first author on the study is Dr. Marta Soldevila, who completed her Ph.D. at the Universitat Pompeu Fabra and performed a substantial part of the sequencing work at DeCODE Genetics (Reykjavik, Iceland).

Maria Smit | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>