Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Imaging study links key genetic risk for Alzheimer’s disease to myelin breakdown

03.01.2006


A new UCLA imaging study shows that age-related breakdown of myelin, the fatty insulation coating the brain’s internal wiring, correlates strongly with the presence of a key genetic risk factor for Alzheimer disease.



The findings are detailed in the January edition of the peer-reviewed journal Archives of General Psychiatry and add to a growing body of evidence that myelin breakdown is a key contributor to the onset of Alzheimer disease later in life.

In addition, the study demonstrates how genetic testing coupled with non-invasive evaluation of myelin breakdown through magnetic resonance imaging (MRI) may prove useful in assessing treatments for preventing the disease.


"Myelination, a process uniquely built up in humans, arguably is the most important and most vulnerable process of brain development as we mature and age. These new findings offer, for the first time, compelling genetic evidence that myelin breakdown underlies both the advanced age and the principal genetic risks for Alzheimer disease," said Dr. George Bartzokis, professor of neurology at UCLA’s David Geffen School of Medicine.

"The human brain functions as a high-speed Internet system," said Bartzokis, director of the UCLA Memory Disorders and Alzheimer Disease Clinic and Clinical Core director of the UCLA Alzheimer Disease Research Center. "The quality of the brain’s connections is key to its speed, bandwidth, fidelity and overall on-line capability."

Myelin is a sheet of lipid, or fat, with very high cholesterol content -- the highest of any brain tissue. The high cholesterol content allows myelin to wrap tightly around axons, speeding messages through the brain by insulating these neural "wire" connections.

As the brain continues to develop in adulthood and as myelin is produced in greater and greater quantities, cholesterol levels in the brain increase and eventually promote the production of a toxic protein that attacks the brain. The protein attacks myelin, disrupts message transfer through the axons and eventually can lead to the brain/mind-destroying plaques and tangles visible years later in the cortex of Alzheimer patients.

The Apolipoprotein E (ApoE) genotype is the second most influential Alzheimer risk factor, after only advanced age. The study used MRI to assess myelin breakdown in 104 healthy individuals between ages 55 and 75 and determine whether the shift in the age at onset of Alzheimer disease caused by the ApoE genotype is associated with age-related myelin breakdown.

The results show that in later-myelinating regions of the brain, the severity and rate of myelin breakdown in healthy older individuals is associated with ApoE status. Thus both age, the most important risk factor for Alzheimer disease, and ApoE status, the second-most important risk factor, seem to act through the process of myelin breakdown.

Dan Page | EurekAlert!
Further information:
http://www.mednet.ucla.edu
http://neurology.medsch.ucla.edu
http://www.adc.ucla.edu

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

Predicting eruptions using satellites and math

28.06.2017 | Earth Sciences

Extremely fine measurements of motion in orbiting supermassive black holes

28.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>