Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Imaging study links key genetic risk for Alzheimer’s disease to myelin breakdown

03.01.2006


A new UCLA imaging study shows that age-related breakdown of myelin, the fatty insulation coating the brain’s internal wiring, correlates strongly with the presence of a key genetic risk factor for Alzheimer disease.



The findings are detailed in the January edition of the peer-reviewed journal Archives of General Psychiatry and add to a growing body of evidence that myelin breakdown is a key contributor to the onset of Alzheimer disease later in life.

In addition, the study demonstrates how genetic testing coupled with non-invasive evaluation of myelin breakdown through magnetic resonance imaging (MRI) may prove useful in assessing treatments for preventing the disease.


"Myelination, a process uniquely built up in humans, arguably is the most important and most vulnerable process of brain development as we mature and age. These new findings offer, for the first time, compelling genetic evidence that myelin breakdown underlies both the advanced age and the principal genetic risks for Alzheimer disease," said Dr. George Bartzokis, professor of neurology at UCLA’s David Geffen School of Medicine.

"The human brain functions as a high-speed Internet system," said Bartzokis, director of the UCLA Memory Disorders and Alzheimer Disease Clinic and Clinical Core director of the UCLA Alzheimer Disease Research Center. "The quality of the brain’s connections is key to its speed, bandwidth, fidelity and overall on-line capability."

Myelin is a sheet of lipid, or fat, with very high cholesterol content -- the highest of any brain tissue. The high cholesterol content allows myelin to wrap tightly around axons, speeding messages through the brain by insulating these neural "wire" connections.

As the brain continues to develop in adulthood and as myelin is produced in greater and greater quantities, cholesterol levels in the brain increase and eventually promote the production of a toxic protein that attacks the brain. The protein attacks myelin, disrupts message transfer through the axons and eventually can lead to the brain/mind-destroying plaques and tangles visible years later in the cortex of Alzheimer patients.

The Apolipoprotein E (ApoE) genotype is the second most influential Alzheimer risk factor, after only advanced age. The study used MRI to assess myelin breakdown in 104 healthy individuals between ages 55 and 75 and determine whether the shift in the age at onset of Alzheimer disease caused by the ApoE genotype is associated with age-related myelin breakdown.

The results show that in later-myelinating regions of the brain, the severity and rate of myelin breakdown in healthy older individuals is associated with ApoE status. Thus both age, the most important risk factor for Alzheimer disease, and ApoE status, the second-most important risk factor, seem to act through the process of myelin breakdown.

Dan Page | EurekAlert!
Further information:
http://www.mednet.ucla.edu
http://neurology.medsch.ucla.edu
http://www.adc.ucla.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>