Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study fishes out new role for prostaglandins

02.01.2006


Prostaglandins – the fat-derived compounds linked to pain, inflammation, reproduction and cancer – can add another biological function to their extensive catalog.



A new study by Vanderbilt researchers reveals that prostaglandins help choreograph the intricate cell movements during early embryonic development in zebrafish, highlighting how perturbations in this pathway might influence human development and the spread of cancer. The results also may point to new molecular targets for cancer prevention therapies.

The findings, published January 1 in the journal Genes and Development, result from a cross-campus collaboration between the labs of Raymond DuBois, M.D., Ph.D., director of the Vanderbilt-Ingram Cancer Center and B.F. Byrd Jr. Professor of Molecular Oncology, and Lilianna Solnica-Krezel, Ph.D., professor of Biological Sciences.


Early in development, vertebrate embryos consist of one layer of cells. These simple embryos must go through a complex reorganization called gastrulation to establish the three primitive layers from which all adult tissues develop – the innermost layer (endoderm), which forms the gut and associated digestive organs; the middle layer (mesoderm), which develops into muscle, bone and cardiovascular organs, and the outer layer (ectoderm), which becomes the skin and nervous system.

"The body is a tube in a tube in a shell," Solnica-Krezel explained. "Before gastrulation, all of these prospective tubes are at the surface of the embryo. Gastrulation puts these different tissue precursors inside the embryo and gives them a proper shape."

But little is known about the chemical signals that cause these cells to move. Previous studies in mice and zebrafish suggested that prostaglandins were important in development. Mice lacking an enzyme that synthesizes prostaglandin had numerous developmental defects, but the true effects of prostaglandins on the embryo were likely obscured by maternal prostaglandin production.

Because they develop outside the mother and are transparent, zebrafish embryos provide a unique model in which to examine prostaglandin’s role in development.

Yong Cha, a graduate student in DuBois’ lab and first author on the study, established a collaboration with zebrafish researcher Solnica-Krezel to study this process.

The researchers inhibited the production of a specific type of prostaglandin, PGE2, in zebrafish embryos and examined their development.

In embryos treated with the inhibitor, gastrulation was arrested or slowed down significantly. The resulting embryo was also shorter than an untreated embryo.

"What is spectacular," said Solnica-Krezel, "is that…if you just put some prostaglandin back in the culture medium, you rescue the phenotype."

In another set of embryos, the researchers blocked prostaglandin receptors, EP2 and EP4. Blocking the EP4 receptor caused defects similar to those associated with blocking PGE2 synthesis. When the researchers analyzed cell movement, they found that the shapes and trajectories of embryonic cells were normal – they simply moved much slower. This suggested that signaling through the EP4 receptor regulates the speed of cell movements during gastrulation.

The sluggish cell movements could have profound implications for development.

"Timing (in development) is really important," DuBois explains. "If you are traveling and have to get to the train station at a particular time, if you are too slow, you are going to miss the train. If you don’t get on that part of the trip, that disturbs the whole agenda."

"Development synchronizes or orchestrates a myriad of events in the proper sequence (lots of trains)," said Solnica-Krezel, "and sometimes one train wreck can halt the entire process."

While ’bad timing’ during development can spell the end for an embryo, finding ways to exploit this pathway could have beneficial effects in cancer cells.

"The pathways important for regulating development are also dysregulated in cancer," said DuBois, who studies prostaglandin signaling in colon cancer. Knowing how prostaglandins regulate cell movement in development can help cancer researchers determine how cancer cells spread throughout the body, or metastasize – and how to stop the process. DuBois previously found that adding PGE2 to cultured cancer cells causes them to move much more rapidly.

"We’ve been able to show that some genes in this pathway are really important for cancer cells to spread to the liver," he said. "Eventually, we may be able to find a way to attack this pathway and prevent metastatic spread of colon cancer."

Scientists have known that people who take aspirin, a drug that inhibits prostaglandin synthesis, have about a 50 percent reduction in their risk of getting colon cancer, DuBois explained.

"We’ve been on a quest for the last 10 years to understand why such a simple drug leads to such a significant reduction in cancer risk," he said. "There are several parts to that puzzle. This (finding) may be one piece."

Zebrafish models may seem like a step back from the more traditional mouse models used to study cancer. But zebrafish, which develop quickly, are inexpensive and easy to manipulate, could actually aid in the discovery of new cancer drugs.

"If you could use the zebrafish intelligently to screen for these drugs, it might really speed up the drug discovery process and give us some early clues about the effects we may see in humans," DuBois said.

Heather Hall | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>