Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study fishes out new role for prostaglandins

02.01.2006


Prostaglandins – the fat-derived compounds linked to pain, inflammation, reproduction and cancer – can add another biological function to their extensive catalog.



A new study by Vanderbilt researchers reveals that prostaglandins help choreograph the intricate cell movements during early embryonic development in zebrafish, highlighting how perturbations in this pathway might influence human development and the spread of cancer. The results also may point to new molecular targets for cancer prevention therapies.

The findings, published January 1 in the journal Genes and Development, result from a cross-campus collaboration between the labs of Raymond DuBois, M.D., Ph.D., director of the Vanderbilt-Ingram Cancer Center and B.F. Byrd Jr. Professor of Molecular Oncology, and Lilianna Solnica-Krezel, Ph.D., professor of Biological Sciences.


Early in development, vertebrate embryos consist of one layer of cells. These simple embryos must go through a complex reorganization called gastrulation to establish the three primitive layers from which all adult tissues develop – the innermost layer (endoderm), which forms the gut and associated digestive organs; the middle layer (mesoderm), which develops into muscle, bone and cardiovascular organs, and the outer layer (ectoderm), which becomes the skin and nervous system.

"The body is a tube in a tube in a shell," Solnica-Krezel explained. "Before gastrulation, all of these prospective tubes are at the surface of the embryo. Gastrulation puts these different tissue precursors inside the embryo and gives them a proper shape."

But little is known about the chemical signals that cause these cells to move. Previous studies in mice and zebrafish suggested that prostaglandins were important in development. Mice lacking an enzyme that synthesizes prostaglandin had numerous developmental defects, but the true effects of prostaglandins on the embryo were likely obscured by maternal prostaglandin production.

Because they develop outside the mother and are transparent, zebrafish embryos provide a unique model in which to examine prostaglandin’s role in development.

Yong Cha, a graduate student in DuBois’ lab and first author on the study, established a collaboration with zebrafish researcher Solnica-Krezel to study this process.

The researchers inhibited the production of a specific type of prostaglandin, PGE2, in zebrafish embryos and examined their development.

In embryos treated with the inhibitor, gastrulation was arrested or slowed down significantly. The resulting embryo was also shorter than an untreated embryo.

"What is spectacular," said Solnica-Krezel, "is that…if you just put some prostaglandin back in the culture medium, you rescue the phenotype."

In another set of embryos, the researchers blocked prostaglandin receptors, EP2 and EP4. Blocking the EP4 receptor caused defects similar to those associated with blocking PGE2 synthesis. When the researchers analyzed cell movement, they found that the shapes and trajectories of embryonic cells were normal – they simply moved much slower. This suggested that signaling through the EP4 receptor regulates the speed of cell movements during gastrulation.

The sluggish cell movements could have profound implications for development.

"Timing (in development) is really important," DuBois explains. "If you are traveling and have to get to the train station at a particular time, if you are too slow, you are going to miss the train. If you don’t get on that part of the trip, that disturbs the whole agenda."

"Development synchronizes or orchestrates a myriad of events in the proper sequence (lots of trains)," said Solnica-Krezel, "and sometimes one train wreck can halt the entire process."

While ’bad timing’ during development can spell the end for an embryo, finding ways to exploit this pathway could have beneficial effects in cancer cells.

"The pathways important for regulating development are also dysregulated in cancer," said DuBois, who studies prostaglandin signaling in colon cancer. Knowing how prostaglandins regulate cell movement in development can help cancer researchers determine how cancer cells spread throughout the body, or metastasize – and how to stop the process. DuBois previously found that adding PGE2 to cultured cancer cells causes them to move much more rapidly.

"We’ve been able to show that some genes in this pathway are really important for cancer cells to spread to the liver," he said. "Eventually, we may be able to find a way to attack this pathway and prevent metastatic spread of colon cancer."

Scientists have known that people who take aspirin, a drug that inhibits prostaglandin synthesis, have about a 50 percent reduction in their risk of getting colon cancer, DuBois explained.

"We’ve been on a quest for the last 10 years to understand why such a simple drug leads to such a significant reduction in cancer risk," he said. "There are several parts to that puzzle. This (finding) may be one piece."

Zebrafish models may seem like a step back from the more traditional mouse models used to study cancer. But zebrafish, which develop quickly, are inexpensive and easy to manipulate, could actually aid in the discovery of new cancer drugs.

"If you could use the zebrafish intelligently to screen for these drugs, it might really speed up the drug discovery process and give us some early clues about the effects we may see in humans," DuBois said.

Heather Hall | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>