Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vertebroplasty improves back pain, activity level

30.12.2005


A Mayo Clinic study has found patients report less back pain at rest and while active following vertebroplasty, a procedure in which medical cement is injected into painful compression fractures in the spinal vertebrae due to osteoporosis. Patients also reported improved function in their daily activities, such as walking, housework and getting dressed. The findings are published in the November/December issue of American Journal of Neuroradiology.



"These findings give us as good evidence as there is -- in a study without a group receiving another or no treatment for comparison -- that patients are more functional for up to a year after vertebroplasty than before vertebroplasty," says David Kallmes, M.D., the Mayo Clinic neuroradiologist who led the study.

The investigators conducted the study to assess vertebroplasty with a well-validated questionnaire specifically designed to measure back pain, the Roland-Morris Disability Questionnaire (RDQ). They reviewed records of 113 Mayo Clinic vertebroplasty patients. Of this group, RDQ scores were available for 108 patients before vertebroplasty treatment, and after treatment for 93 patients at one week, 73 patients at one month, 46 patients at six months and 15 patients at one year. Patients’ pain during rest and activity improved an average of seven points one week after treatment and remained improved one year following vertebroplasty. Prior to treatment, the average RDQ score was 18 on a scale of 23. The RDQ dropped to an average score of 11 immediately after treatment and remained at that level throughout the study.


Dr. Kallmes explains that in light of the wide practice of vertebroplasty for vertebral compression fractures, a study using a top-caliber back pain measurement tool like the RDQ was critical, especially in light of the often subjective nature of pain reporting by different patients.

"It’s hard to remember your pain," he says. "Also, it’s hard to say how bad my pain is compared to your pain. I’ve had patients say their pain is no better after treatment, yet I look at them and they look 10 times better."

Dr. Kallmes explains that ultimately, vertebroplasty needs evaluation through a study of the highest quality, a clinical trial in which patients are randomly assigned to receive treatment or no treatment and in which the patients and investigators are blinded to which patients receive the real treatment or a placebo used for comparison.

"Vertebroplasty has been promulgated by physicians who performed the procedure without quantifying the benefit," he says. "Yet, medical literature is rife with studies that have debunked therapies that are already in use."

Dr. Kallmes is making strides toward high-quality measurement of vertebroplasty. Currently, he is leading an international, multicenter study looking at whether the cement used in vertebroplasty is responsible for the pain relief reported by patients. Patients in this study are randomly assigned to receive treatment with the real cement used in vertebroplasty or a placebo.

Patients for whom vertebroplasty is appropriate, according to Dr. Kallmes, have osteoporosis or a similar condition and have suffered compression of their spines with no or minimal injury. For example, while bending over to tie their shoes or turning over in bed, patients’ vertebrae may fracture because their bones are weakened due to osteoporosis. Each year, 700,000 people suffer this injury. For four out of five patients, the fracture heals and the accompanying pain goes away in approximately four weeks with bed rest and analgesics. However, for one in five patients, the fracture does not heal and the pain persists, requiring treatment. Surgery is not an option for these patients, as their bones are too weak. Vertebroplasty is the only available treatment option for patients in this condition.

Vertebroplasty is not appropriate for patients with back pain due to ligament injuries, joint disease or narrowing of the spinal canal, says Dr. Kallmes.

Lisa Lucier | EurekAlert!
Further information:
http://www.mayo.edu
http://www.ajnr.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>