Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Vertebroplasty improves back pain, activity level


A Mayo Clinic study has found patients report less back pain at rest and while active following vertebroplasty, a procedure in which medical cement is injected into painful compression fractures in the spinal vertebrae due to osteoporosis. Patients also reported improved function in their daily activities, such as walking, housework and getting dressed. The findings are published in the November/December issue of American Journal of Neuroradiology.

"These findings give us as good evidence as there is -- in a study without a group receiving another or no treatment for comparison -- that patients are more functional for up to a year after vertebroplasty than before vertebroplasty," says David Kallmes, M.D., the Mayo Clinic neuroradiologist who led the study.

The investigators conducted the study to assess vertebroplasty with a well-validated questionnaire specifically designed to measure back pain, the Roland-Morris Disability Questionnaire (RDQ). They reviewed records of 113 Mayo Clinic vertebroplasty patients. Of this group, RDQ scores were available for 108 patients before vertebroplasty treatment, and after treatment for 93 patients at one week, 73 patients at one month, 46 patients at six months and 15 patients at one year. Patients’ pain during rest and activity improved an average of seven points one week after treatment and remained improved one year following vertebroplasty. Prior to treatment, the average RDQ score was 18 on a scale of 23. The RDQ dropped to an average score of 11 immediately after treatment and remained at that level throughout the study.

Dr. Kallmes explains that in light of the wide practice of vertebroplasty for vertebral compression fractures, a study using a top-caliber back pain measurement tool like the RDQ was critical, especially in light of the often subjective nature of pain reporting by different patients.

"It’s hard to remember your pain," he says. "Also, it’s hard to say how bad my pain is compared to your pain. I’ve had patients say their pain is no better after treatment, yet I look at them and they look 10 times better."

Dr. Kallmes explains that ultimately, vertebroplasty needs evaluation through a study of the highest quality, a clinical trial in which patients are randomly assigned to receive treatment or no treatment and in which the patients and investigators are blinded to which patients receive the real treatment or a placebo used for comparison.

"Vertebroplasty has been promulgated by physicians who performed the procedure without quantifying the benefit," he says. "Yet, medical literature is rife with studies that have debunked therapies that are already in use."

Dr. Kallmes is making strides toward high-quality measurement of vertebroplasty. Currently, he is leading an international, multicenter study looking at whether the cement used in vertebroplasty is responsible for the pain relief reported by patients. Patients in this study are randomly assigned to receive treatment with the real cement used in vertebroplasty or a placebo.

Patients for whom vertebroplasty is appropriate, according to Dr. Kallmes, have osteoporosis or a similar condition and have suffered compression of their spines with no or minimal injury. For example, while bending over to tie their shoes or turning over in bed, patients’ vertebrae may fracture because their bones are weakened due to osteoporosis. Each year, 700,000 people suffer this injury. For four out of five patients, the fracture heals and the accompanying pain goes away in approximately four weeks with bed rest and analgesics. However, for one in five patients, the fracture does not heal and the pain persists, requiring treatment. Surgery is not an option for these patients, as their bones are too weak. Vertebroplasty is the only available treatment option for patients in this condition.

Vertebroplasty is not appropriate for patients with back pain due to ligament injuries, joint disease or narrowing of the spinal canal, says Dr. Kallmes.

Lisa Lucier | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>