Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Years Eve party tip

30.12.2005


When pouring liquor, even professional bartenders unintentionally pour 20 to 30 percent more into short, squat glasses than into tall, thin ones, according to a new Cornell University study.


Jason Koski/University Photography
Cornell Professor Brian Wansink’s study showed that people overpour into short, squat glasses by 20 to 30 percent, compared with tall, thin glasses, probably because of the vertical-horizontal optical illusion that people consistently perceive vertical lines as longer than horizontal ones of the same length. Copyright © Cornell University


Wansink 2005©



"Yet, people who pour into short, wide glasses consistently believe that they pour less than those who pour into tall, narrow glasses," said Brian Wansink, the John S. Dyson Professor of Marketing, Applied Economics and of Nutritional Science at Cornell. "And education, practice, concentration and experience don’t correct the overpouring."

The reason for the difference, Wansink speculates, is the classic vertical-horizontal optical illusion: People consistently perceive equally sized vertical lines as longer than horizontal ones.


"People generally estimate tall glasses as holding more liquid than wide ones of the same volume," Wansink said. "They also focus their pouring attention on the height of the liquid they are pouring and insufficiently compensate for its width."

The study, by Wansink and Koert van Ittersum, assistant professor of marketing at Georgia Institute of Technology, is published in the newest issue of the British Medical Journal.

In separate studies, the researchers asked 198 college students (43 percent female) of legal drinking age and 86 professional bartenders (with an average six years experience -- 38 percent of them female) to pour a shot (1.5 oz.) of spirits into either short, wide tumblers or tall, thin highball glasses.

The college students consistently poured 30 percent more alcohol into the short glasses than into the tall, and the bartenders poured 20 percent more.

When the researchers asked one group of students to practice 10 times before the actual pour, they still poured 26 percent more into the short glasses. When the researchers asked one group of bartenders to "please take your time," the bartenders took twice as long to pour the drink, but still poured 10 percent more into the short glasses.

Because people generally consume most -- about 92 percent -- of what they serve themselves, the issue of pouring accuracy is relevant to policy-makers, health professionals, consumers, law enforcement officials and alcohol addiction and abuse counselors, write the authors. For example, they note, the hospitality industry wants to control serving sizes and thus costs, those in public policy want to minimize waste, and health professionals want to discourage overconsumption.

Advice from Wansink for bars and restaurants and for those who don’t want to unintentionally drink too much: "Use tall glasses or glasses with alcohol-level marks etched on them." For parents? Use tall, thin glasses when pouring soda but short, wide glasses for milk and other healthful drinks.

Wansink, the author of the new book "Marketing Nutrition: Soy, Functional Foods, Biotechnology and Obesity," is also the director of the Cornell Food and Brand Lab, made up of a group of interdisciplinary researchers who have conducted more than 200 studies on the psychology behind what people eat and how often they eat it.

Brian Wansink | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>