Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Years Eve party tip

30.12.2005


When pouring liquor, even professional bartenders unintentionally pour 20 to 30 percent more into short, squat glasses than into tall, thin ones, according to a new Cornell University study.


Jason Koski/University Photography
Cornell Professor Brian Wansink’s study showed that people overpour into short, squat glasses by 20 to 30 percent, compared with tall, thin glasses, probably because of the vertical-horizontal optical illusion that people consistently perceive vertical lines as longer than horizontal ones of the same length. Copyright © Cornell University


Wansink 2005©



"Yet, people who pour into short, wide glasses consistently believe that they pour less than those who pour into tall, narrow glasses," said Brian Wansink, the John S. Dyson Professor of Marketing, Applied Economics and of Nutritional Science at Cornell. "And education, practice, concentration and experience don’t correct the overpouring."

The reason for the difference, Wansink speculates, is the classic vertical-horizontal optical illusion: People consistently perceive equally sized vertical lines as longer than horizontal ones.


"People generally estimate tall glasses as holding more liquid than wide ones of the same volume," Wansink said. "They also focus their pouring attention on the height of the liquid they are pouring and insufficiently compensate for its width."

The study, by Wansink and Koert van Ittersum, assistant professor of marketing at Georgia Institute of Technology, is published in the newest issue of the British Medical Journal.

In separate studies, the researchers asked 198 college students (43 percent female) of legal drinking age and 86 professional bartenders (with an average six years experience -- 38 percent of them female) to pour a shot (1.5 oz.) of spirits into either short, wide tumblers or tall, thin highball glasses.

The college students consistently poured 30 percent more alcohol into the short glasses than into the tall, and the bartenders poured 20 percent more.

When the researchers asked one group of students to practice 10 times before the actual pour, they still poured 26 percent more into the short glasses. When the researchers asked one group of bartenders to "please take your time," the bartenders took twice as long to pour the drink, but still poured 10 percent more into the short glasses.

Because people generally consume most -- about 92 percent -- of what they serve themselves, the issue of pouring accuracy is relevant to policy-makers, health professionals, consumers, law enforcement officials and alcohol addiction and abuse counselors, write the authors. For example, they note, the hospitality industry wants to control serving sizes and thus costs, those in public policy want to minimize waste, and health professionals want to discourage overconsumption.

Advice from Wansink for bars and restaurants and for those who don’t want to unintentionally drink too much: "Use tall glasses or glasses with alcohol-level marks etched on them." For parents? Use tall, thin glasses when pouring soda but short, wide glasses for milk and other healthful drinks.

Wansink, the author of the new book "Marketing Nutrition: Soy, Functional Foods, Biotechnology and Obesity," is also the director of the Cornell Food and Brand Lab, made up of a group of interdisciplinary researchers who have conducted more than 200 studies on the psychology behind what people eat and how often they eat it.

Brian Wansink | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Studies and Analyses:

nachricht Physics of bubbles could explain language patterns
25.07.2017 | University of Portsmouth

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

Getting closer to porous, light-responsive materials

26.07.2017 | Materials Sciences

Large, distant comets more common than previously thought

26.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>