Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn study finds hyperbaric oxygen treatments mobilize stem cells

30.12.2005


Recovery of injured and diseased tissue the ultimate goal

According to a study to be published in the American Journal of Physiology-Heart and Circulation Physiology, a typical course of hyperbaric oxygen treatments increases by eight-fold the number of stem cells circulating in a patient’s body. Stem cells, also called progenitor cells are crucial to injury repair. The study currently appears on-line and is scheduled for publication in the April 2006 edition of the American Journal.

Stem cells exist in the bone marrow of human beings and animals and are capable of changing their nature to become part of many different organs and tissues. In response to injury, these cells move from the bone marrow to the injured sites, where they differentiate into cells that assist in the healing process. The movement, or mobilization, of stem cells can be triggered by a variety of stimuli – including pharmaceutical agents and hyperbaric oxygen treatments. Where as drugs are associated with a host of side effects, hyperbaric oxygen treatments carry a significantly lower risk of such effects.



"This is the safest way clinically to increase stem cell circulation, far safer than any of the pharmaceutical options," said Stephen Thom, MD, Ph.D., Professor of Emergency Medicine at the University of Pennsylvania School of Medicine and lead author of the study. "This study provides information on the fundamental mechanisms for hyperbaric oxygen and offers a new theoretical therapeutic option for mobilizing stem cells."

"We reproduced the observations from humans in animals in order to identify the mechanism for the hyperbaric oxygen effect," added Thom. "We found that hyperbaric oxygen mobilizes stem/progenitor cells because it increases synthesis of a molecule called nitric oxide in the bone marrow. This synthesis is thought to trigger enzymes that mediate stem/progenitor cell release."

Hopefully, future study of hyperbaric oxygen’s role in mobilizing stem cells will provide a wide array of treatments for combating injury and disease.

Rick Cushman | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>