Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn study finds hyperbaric oxygen treatments mobilize stem cells

30.12.2005


Recovery of injured and diseased tissue the ultimate goal

According to a study to be published in the American Journal of Physiology-Heart and Circulation Physiology, a typical course of hyperbaric oxygen treatments increases by eight-fold the number of stem cells circulating in a patient’s body. Stem cells, also called progenitor cells are crucial to injury repair. The study currently appears on-line and is scheduled for publication in the April 2006 edition of the American Journal.

Stem cells exist in the bone marrow of human beings and animals and are capable of changing their nature to become part of many different organs and tissues. In response to injury, these cells move from the bone marrow to the injured sites, where they differentiate into cells that assist in the healing process. The movement, or mobilization, of stem cells can be triggered by a variety of stimuli – including pharmaceutical agents and hyperbaric oxygen treatments. Where as drugs are associated with a host of side effects, hyperbaric oxygen treatments carry a significantly lower risk of such effects.



"This is the safest way clinically to increase stem cell circulation, far safer than any of the pharmaceutical options," said Stephen Thom, MD, Ph.D., Professor of Emergency Medicine at the University of Pennsylvania School of Medicine and lead author of the study. "This study provides information on the fundamental mechanisms for hyperbaric oxygen and offers a new theoretical therapeutic option for mobilizing stem cells."

"We reproduced the observations from humans in animals in order to identify the mechanism for the hyperbaric oxygen effect," added Thom. "We found that hyperbaric oxygen mobilizes stem/progenitor cells because it increases synthesis of a molecule called nitric oxide in the bone marrow. This synthesis is thought to trigger enzymes that mediate stem/progenitor cell release."

Hopefully, future study of hyperbaric oxygen’s role in mobilizing stem cells will provide a wide array of treatments for combating injury and disease.

Rick Cushman | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>