Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study suggests way to re-energize immune response to chronic viral infection

30.12.2005


Findings provide potential strategy to improve therapeutic vaccines, T cell immunotherapy

Like boxers wearied by a 15-round bout, the immune system’s CD8 T cells eventually become "exhausted" in their battle against persistent viral infection, and less effective in fighting the disease.

In a study to be published Dec. 28 on the journal Nature’s website, researchers at Dana-Farber Cancer Institute and Emory University have traced the problem to a gene that turns off the infection-fighting drive of CD8 T cells in mice. The discovery raises the possibility that CD8 cell exhaustion can be reversed in human patients, reinvigorating the immune system’s defenses against chronic viral infections ranging from hepatitis to HIV, the virus that causes AIDS.



"CD8 T cells that have fought viral infections retain a ’memory’ of the viruses they’ve encountered, so they can rapidly respond to new infections from those viruses," says the study’s author, Gordon Freeman, PhD, of Dana-Farber. In the case of chronic infection, however, senior author Rafi Ahmed, PhD, of Emory, has shown that memory cells become exhausted and lose the capacity to respond to the virus. Why this occurs, on a molecular level, has been unclear.

To find the cause, Freeman and his colleagues conducted a "microarray" experiment measuring the activity of thousands of genes in normal memory CD8 T cells in mice and in "exhausted" versions of those cells. They found that a gene known as PD-1 was much more active in the exhausted cells.

From previous research, Freeman’s team knew that PD-1 is responsible for a specialized "receptor" in CD8 cells -- a tiny socket for receiving signals from other cells. In 2001, Freeman and his colleagues showed that when the PD-1 receptor latches onto a molecule called PD-L1, the immune system’s response to infection is weakened. Freeman’s team made antibodies to block this interaction.

"When [co-author] John Wherry of the Wistar Institute found a high level of the PD-1 gene in microarray experiments, we wanted to test whether this was contributing to the CD8 exhaustion," says Freeman, who is also an assistant professor of medicine at Harvard Medical School. "We found that exhausted CD8 T cells in mice have unusually large numbers of PD-1 receptors, and blocking the PD-1/PD-L1 bond reactivated the cells’ response to infection."

Just as strikingly, researchers found that even in persistently infected mice that lacked a type of T cell known as helper CD4, preventing PD-1 from binding to PD-L1 had a beneficial effect on "helpless" CD8 T cells -- restoring their ability to kill infected cells and release infection-fighting substances called cytokines, substantially reducing the animals’ "viral load."

Although it’s not known why CD8 cells become exhausted -- roughly a month after infection begins -- scientists theorize that it may be part of the body’s system for naturally ending the immune response after an infection has been quelled. If it persists too long, the immune response can damage normal, healthy tissue. In the mouse studies, CD8 T cells were reinvigorated only as long as researchers continued to administer PD-1/PD-L1 blockers, so the chance of sparking a runaway immune response seems unlikely.

If human CD8 T cells are found to operate by a mechanism similar to that in mice, the new findings may offer a simple immunological strategy for treating chronic viral infections. Freeman’s lab is also exploring whether anti-cancer T cells become exhausted in various types of tumors and in HIV-infected individuals.

"The potential applications of this work are wide-ranging," Freeman remarks, noting that he and his collaborators have recently received a grant from the Bill and Melinda Gates Foundation’s Grand Challenges in Global Health program to extend their findings to hepatitis C infection.

The study’s first author is Daniel Barber, PhD, of Emory University School of Medicine.

In addition to Freeman, Ahmed and Wherry, the study’s other authors are David Masopust, PhD, of Emory; Baogong Zhu, MD, of Dana-Farber; James Allison, PhD, of Memorial Sloan-Kettering Cancer Center in New York; and Arlene Sharpe, MD, PhD, of Brigham and Women’s Hospital in Boston.

Bill Schaller | EurekAlert!
Further information:
http://www.dfci.harvard.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>