Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study suggests way to re-energize immune response to chronic viral infection

30.12.2005


Findings provide potential strategy to improve therapeutic vaccines, T cell immunotherapy

Like boxers wearied by a 15-round bout, the immune system’s CD8 T cells eventually become "exhausted" in their battle against persistent viral infection, and less effective in fighting the disease.

In a study to be published Dec. 28 on the journal Nature’s website, researchers at Dana-Farber Cancer Institute and Emory University have traced the problem to a gene that turns off the infection-fighting drive of CD8 T cells in mice. The discovery raises the possibility that CD8 cell exhaustion can be reversed in human patients, reinvigorating the immune system’s defenses against chronic viral infections ranging from hepatitis to HIV, the virus that causes AIDS.



"CD8 T cells that have fought viral infections retain a ’memory’ of the viruses they’ve encountered, so they can rapidly respond to new infections from those viruses," says the study’s author, Gordon Freeman, PhD, of Dana-Farber. In the case of chronic infection, however, senior author Rafi Ahmed, PhD, of Emory, has shown that memory cells become exhausted and lose the capacity to respond to the virus. Why this occurs, on a molecular level, has been unclear.

To find the cause, Freeman and his colleagues conducted a "microarray" experiment measuring the activity of thousands of genes in normal memory CD8 T cells in mice and in "exhausted" versions of those cells. They found that a gene known as PD-1 was much more active in the exhausted cells.

From previous research, Freeman’s team knew that PD-1 is responsible for a specialized "receptor" in CD8 cells -- a tiny socket for receiving signals from other cells. In 2001, Freeman and his colleagues showed that when the PD-1 receptor latches onto a molecule called PD-L1, the immune system’s response to infection is weakened. Freeman’s team made antibodies to block this interaction.

"When [co-author] John Wherry of the Wistar Institute found a high level of the PD-1 gene in microarray experiments, we wanted to test whether this was contributing to the CD8 exhaustion," says Freeman, who is also an assistant professor of medicine at Harvard Medical School. "We found that exhausted CD8 T cells in mice have unusually large numbers of PD-1 receptors, and blocking the PD-1/PD-L1 bond reactivated the cells’ response to infection."

Just as strikingly, researchers found that even in persistently infected mice that lacked a type of T cell known as helper CD4, preventing PD-1 from binding to PD-L1 had a beneficial effect on "helpless" CD8 T cells -- restoring their ability to kill infected cells and release infection-fighting substances called cytokines, substantially reducing the animals’ "viral load."

Although it’s not known why CD8 cells become exhausted -- roughly a month after infection begins -- scientists theorize that it may be part of the body’s system for naturally ending the immune response after an infection has been quelled. If it persists too long, the immune response can damage normal, healthy tissue. In the mouse studies, CD8 T cells were reinvigorated only as long as researchers continued to administer PD-1/PD-L1 blockers, so the chance of sparking a runaway immune response seems unlikely.

If human CD8 T cells are found to operate by a mechanism similar to that in mice, the new findings may offer a simple immunological strategy for treating chronic viral infections. Freeman’s lab is also exploring whether anti-cancer T cells become exhausted in various types of tumors and in HIV-infected individuals.

"The potential applications of this work are wide-ranging," Freeman remarks, noting that he and his collaborators have recently received a grant from the Bill and Melinda Gates Foundation’s Grand Challenges in Global Health program to extend their findings to hepatitis C infection.

The study’s first author is Daniel Barber, PhD, of Emory University School of Medicine.

In addition to Freeman, Ahmed and Wherry, the study’s other authors are David Masopust, PhD, of Emory; Baogong Zhu, MD, of Dana-Farber; James Allison, PhD, of Memorial Sloan-Kettering Cancer Center in New York; and Arlene Sharpe, MD, PhD, of Brigham and Women’s Hospital in Boston.

Bill Schaller | EurekAlert!
Further information:
http://www.dfci.harvard.edu

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>