Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study suggests way to re-energize immune response to chronic viral infection

30.12.2005


Findings provide potential strategy to improve therapeutic vaccines, T cell immunotherapy

Like boxers wearied by a 15-round bout, the immune system’s CD8 T cells eventually become "exhausted" in their battle against persistent viral infection, and less effective in fighting the disease.

In a study to be published Dec. 28 on the journal Nature’s website, researchers at Dana-Farber Cancer Institute and Emory University have traced the problem to a gene that turns off the infection-fighting drive of CD8 T cells in mice. The discovery raises the possibility that CD8 cell exhaustion can be reversed in human patients, reinvigorating the immune system’s defenses against chronic viral infections ranging from hepatitis to HIV, the virus that causes AIDS.



"CD8 T cells that have fought viral infections retain a ’memory’ of the viruses they’ve encountered, so they can rapidly respond to new infections from those viruses," says the study’s author, Gordon Freeman, PhD, of Dana-Farber. In the case of chronic infection, however, senior author Rafi Ahmed, PhD, of Emory, has shown that memory cells become exhausted and lose the capacity to respond to the virus. Why this occurs, on a molecular level, has been unclear.

To find the cause, Freeman and his colleagues conducted a "microarray" experiment measuring the activity of thousands of genes in normal memory CD8 T cells in mice and in "exhausted" versions of those cells. They found that a gene known as PD-1 was much more active in the exhausted cells.

From previous research, Freeman’s team knew that PD-1 is responsible for a specialized "receptor" in CD8 cells -- a tiny socket for receiving signals from other cells. In 2001, Freeman and his colleagues showed that when the PD-1 receptor latches onto a molecule called PD-L1, the immune system’s response to infection is weakened. Freeman’s team made antibodies to block this interaction.

"When [co-author] John Wherry of the Wistar Institute found a high level of the PD-1 gene in microarray experiments, we wanted to test whether this was contributing to the CD8 exhaustion," says Freeman, who is also an assistant professor of medicine at Harvard Medical School. "We found that exhausted CD8 T cells in mice have unusually large numbers of PD-1 receptors, and blocking the PD-1/PD-L1 bond reactivated the cells’ response to infection."

Just as strikingly, researchers found that even in persistently infected mice that lacked a type of T cell known as helper CD4, preventing PD-1 from binding to PD-L1 had a beneficial effect on "helpless" CD8 T cells -- restoring their ability to kill infected cells and release infection-fighting substances called cytokines, substantially reducing the animals’ "viral load."

Although it’s not known why CD8 cells become exhausted -- roughly a month after infection begins -- scientists theorize that it may be part of the body’s system for naturally ending the immune response after an infection has been quelled. If it persists too long, the immune response can damage normal, healthy tissue. In the mouse studies, CD8 T cells were reinvigorated only as long as researchers continued to administer PD-1/PD-L1 blockers, so the chance of sparking a runaway immune response seems unlikely.

If human CD8 T cells are found to operate by a mechanism similar to that in mice, the new findings may offer a simple immunological strategy for treating chronic viral infections. Freeman’s lab is also exploring whether anti-cancer T cells become exhausted in various types of tumors and in HIV-infected individuals.

"The potential applications of this work are wide-ranging," Freeman remarks, noting that he and his collaborators have recently received a grant from the Bill and Melinda Gates Foundation’s Grand Challenges in Global Health program to extend their findings to hepatitis C infection.

The study’s first author is Daniel Barber, PhD, of Emory University School of Medicine.

In addition to Freeman, Ahmed and Wherry, the study’s other authors are David Masopust, PhD, of Emory; Baogong Zhu, MD, of Dana-Farber; James Allison, PhD, of Memorial Sloan-Kettering Cancer Center in New York; and Arlene Sharpe, MD, PhD, of Brigham and Women’s Hospital in Boston.

Bill Schaller | EurekAlert!
Further information:
http://www.dfci.harvard.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>