Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study expands understanding of the role of RNA editing in gene control

27.12.2005


For many years, scientists thought gene activity was relatively straightforward: Genes were transcribed into messenger RNA, which was processed and translated into the proteins of the body. Certainly, there were many factors governing the transcription process, but gene control happened at the level of the DNA.



In the past few years, however, evidence for a more nuanced understanding of the total genetic system has steadily accumulated. Researchers at The Wistar Institute and elsewhere have been teasing out the details of a process called RNA editing, in which messenger RNA sequence is altered after transcription by editing enzymes, so that a single gene can produce a number of related but distinct variant proteins. Most recently, scientists have discovered an extensive family of small molecules called microRNAs, or miRNAs, that appear to target and inactivate particular messenger RNAs. This targeted gene silencing is now seen as one of the body’s primary strategies for regulating its genome.

Now, in a new study published online in Nature Structural & Molecular Biology, a Wistar-led team of scientists details the convergence of these two post-transcriptional genetic systems. The findings show that precursor miRNAs, like messenger RNAs, are themselves subject to specific RNA editing, the result of which is to suppress miRNA expression and its activity. The importance of understanding these joined processes can be seen in the fact that roles have been identified for miRNAs in embryonic development, cell and tissue differentiation, and, increasingly, in cancer formation.


"A couple of years ago, we started to investigate whether miRNA precursors were being edited in processing," says Kazuko Nishikura, Ph.D., senior author on the study and a professor in the gene expression and regulation program at The Wistar Institute. "We found that about half of all miRNA precursor molecules are subject to editing. Looking more closely at a particular miRNA precursor found in blood cells, we identified a specific site where editing leads to suppression of the mature miRNA."

Nishikura’s team demonstrated that two RNA editing enzymes known as ADAR1 and ADAR2, long the focus of study in her laboratory, are able to alter a specific occurrence of the nucleotide adenosine, changing it to inosine in the precursor molecule for miRNA-142, expressed in hematopoietic tissues. This editing had the effect of preventing a key miRNA processing enzyme called Drosha from cutting the precursor miRNA molecule at a critical step in that process.

Looking downstream along the miRNA processing pathway, the scientists also discovered that a molecular complex called RISC played a surprising role. Several components of RISC are known to be involved in normal miRNA processing. But the duties of an identified component of RISC called Tudor-SN were not known. In this study, Tudor-SN was found to be responsible for degrading miRNAs that had been edited in the earlier step, snipping into smaller bits the now useless precursor miRNA molecule precisely at the inosine site resulting from the earlier editing.

Taken together, the results of the study suggest that regulation of the genome is considerably more sophisticated than had been previously understood to be the case.

"People used to think that gene regulation was best done at the very beginning of the production line, which is transcription," says Nishikura. "Therefore, many scientists investigated transcription factors, activating proteins, and so on. But things have changed, and we now know that genes are controlled at many different levels."

The lead author on the Nature Structural & Molecular Biology study is Weidong Yang. Additional Wistar-based co-authors are Thimmaiah P. Chendrimada and Qingde Wang. Ramin Shiekhattar, Ph.D., a professor in two programs at Wistar, the gene expression and regulation program and molecular and cellular oncogenesis program, collaborated with senior author Nishikura on the investigation. (Shiekhattar’s own research has contributed to a better understanding of the processing steps that lead to mature miRNAs: See http://www.wistar.org/news_info/pressreleases/pr_11.03.05.htm.) The remaining coauthors on the current study are Miyoko Higuchi and Peter H. Seeburg at the Max Planck Institute for Medical Research in Heidelberg, Germany.

Marion Wyce | EurekAlert!
Further information:
http://www.wistar.org/news_info/pressreleases/pr_11.03.05.htm

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>