Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study expands understanding of the role of RNA editing in gene control

27.12.2005


For many years, scientists thought gene activity was relatively straightforward: Genes were transcribed into messenger RNA, which was processed and translated into the proteins of the body. Certainly, there were many factors governing the transcription process, but gene control happened at the level of the DNA.



In the past few years, however, evidence for a more nuanced understanding of the total genetic system has steadily accumulated. Researchers at The Wistar Institute and elsewhere have been teasing out the details of a process called RNA editing, in which messenger RNA sequence is altered after transcription by editing enzymes, so that a single gene can produce a number of related but distinct variant proteins. Most recently, scientists have discovered an extensive family of small molecules called microRNAs, or miRNAs, that appear to target and inactivate particular messenger RNAs. This targeted gene silencing is now seen as one of the body’s primary strategies for regulating its genome.

Now, in a new study published online in Nature Structural & Molecular Biology, a Wistar-led team of scientists details the convergence of these two post-transcriptional genetic systems. The findings show that precursor miRNAs, like messenger RNAs, are themselves subject to specific RNA editing, the result of which is to suppress miRNA expression and its activity. The importance of understanding these joined processes can be seen in the fact that roles have been identified for miRNAs in embryonic development, cell and tissue differentiation, and, increasingly, in cancer formation.


"A couple of years ago, we started to investigate whether miRNA precursors were being edited in processing," says Kazuko Nishikura, Ph.D., senior author on the study and a professor in the gene expression and regulation program at The Wistar Institute. "We found that about half of all miRNA precursor molecules are subject to editing. Looking more closely at a particular miRNA precursor found in blood cells, we identified a specific site where editing leads to suppression of the mature miRNA."

Nishikura’s team demonstrated that two RNA editing enzymes known as ADAR1 and ADAR2, long the focus of study in her laboratory, are able to alter a specific occurrence of the nucleotide adenosine, changing it to inosine in the precursor molecule for miRNA-142, expressed in hematopoietic tissues. This editing had the effect of preventing a key miRNA processing enzyme called Drosha from cutting the precursor miRNA molecule at a critical step in that process.

Looking downstream along the miRNA processing pathway, the scientists also discovered that a molecular complex called RISC played a surprising role. Several components of RISC are known to be involved in normal miRNA processing. But the duties of an identified component of RISC called Tudor-SN were not known. In this study, Tudor-SN was found to be responsible for degrading miRNAs that had been edited in the earlier step, snipping into smaller bits the now useless precursor miRNA molecule precisely at the inosine site resulting from the earlier editing.

Taken together, the results of the study suggest that regulation of the genome is considerably more sophisticated than had been previously understood to be the case.

"People used to think that gene regulation was best done at the very beginning of the production line, which is transcription," says Nishikura. "Therefore, many scientists investigated transcription factors, activating proteins, and so on. But things have changed, and we now know that genes are controlled at many different levels."

The lead author on the Nature Structural & Molecular Biology study is Weidong Yang. Additional Wistar-based co-authors are Thimmaiah P. Chendrimada and Qingde Wang. Ramin Shiekhattar, Ph.D., a professor in two programs at Wistar, the gene expression and regulation program and molecular and cellular oncogenesis program, collaborated with senior author Nishikura on the investigation. (Shiekhattar’s own research has contributed to a better understanding of the processing steps that lead to mature miRNAs: See http://www.wistar.org/news_info/pressreleases/pr_11.03.05.htm.) The remaining coauthors on the current study are Miyoko Higuchi and Peter H. Seeburg at the Max Planck Institute for Medical Research in Heidelberg, Germany.

Marion Wyce | EurekAlert!
Further information:
http://www.wistar.org/news_info/pressreleases/pr_11.03.05.htm

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>