Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nervous system’s role in fatal heart rhythm studied

23.12.2005


Finding out why seemingly healthy people experience ventricular fibrillation, a fatal irregular heart rhythm, could eventually lead to better methods of early detection, according to a Medical College of Georgia researcher.



“We don’t know what starts ventricular fibrillation or why defibrillation – electrically shocking the heart back into beating normally – works to correct it,” says Dr. Autumn Schumacher, a new faculty member in the MCG School of Nursing who recently won the American Heart Association’s Martha N. Hill New Investigator Award for her research. “We do, however, need a better understanding of this abnormal rhythm and its subtle warning signals so that we can develop smarter bedside monitors.”

While the condition is more common in people with undiagnosed heart problems, those who’ve had a previous heart attack and those with coronary artery disease, it also happens to seemingly healthy people when the body is under stress and secreting adrenaline, says Dr. Schumacher, a physiological and technological nursing professor.


Her current research focuses on what effect adrenaline has on the electrical patterns in the heart.

“The autonomic nervous system controls the heart rate by signaling our body to secrete adrenaline and increase our heart rate based on what we need – the fight or flight reflex,” she says.

Researchers already know that ventricular fibrillation occurs when the heart’s electrical system malfunctions, the electrical signals that control the pumping of the heart become rapid and chaotic causing the lower chambers of the heart to quiver instead of contract. Those chambers can no longer pump blood to the rest of the body, which leads to sudden cardiac death without defibrillation – a successful emergency shock to jump start the heart back into a regular beat.

Studying those electrical signals is what will lead to better medical equipment, Dr. Schumacher says.

Traditional cardiac tests such as electrocardiograms, which record the electrical activity of the heart and identify abnormal rhythms, and echocardiograms, which use sound waves to create a moving picture of the heart, haven’t been able to pinpoint minute changes that are a precursor to ventricular fibrillation; they only provide a picture of large scale electrical activity.

But, by using voltage-sensitive fluorescent dye, injecting it into an isolated animal model and photographing the images at 1,000 frames per second, researchers have been able to see the small picture. These minute images of ventricular fibrillation have recently led to the discovery that the electrical activity during ventricular fibrillation forms distinct patterns.

“The patterns aren’t random as we previously thought,” Dr. Schumacher says. “They actually form spiral waves that often collide with each other and spin off more spiral waves.”

Better bedside monitors will be able to detect the precursors to those spiral wave patterns so that doctors and nurses will have a two-to-three minute warning and can prevent ventricular fibrillation before it happens, she says.

To find out what role adrenaline plays in the whole process, Dr. Schumacher uses various drugs to simulate autonomic nervous system imbalance in an isolated animal heart. Then she photographs fluorescent images of the electrical activity while recording the heart’s rhythm with an electrocardiogram.

“We know that autonomic imbalance and too much adrenaline can contribute to the conditions promoting ventricular fibrillation,” she says. “This research aims to find out why.”

Jennifer Hilliard | EurekAlert!
Further information:
http://www.mcg.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>