Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Effective, safe anthrax vaccine can be grown in tobacco plants


Study a breakthrough in efforts to find safe, effective method of producing large quantities of vaccine for top bioterrorism threat

Enough anthrax vaccine to inoculate everyone in the United States could be grown inexpensively and safely with only one acre of tobacco plants, a University of Central Florida molecular biologist has found.

Mice immunized with a vaccine produced in UCF professor Henry Daniell’s laboratory through the genetic engineering of tobacco plants survived lethal doses of anthrax administered later by National Institutes of Health researchers. The results of the NIH-funded study are featured in the December issue of the Infection & Immunity journal.

Daniell’s research is a breakthrough in efforts to find a safe and effective method of producing large quantities of vaccine for anthrax, one of the top bioterrorism threats facing the United States. The new production method also could help the government and health care providers avoid supply shortages, as one acre of plants can produce 360 million doses in a year.

"Anthrax vaccine is very much in need, primarily because of bioterrorism concerns," Daniell said. "But in the United States, only one company has the capacity to produce the vaccine, and it is made in very small quantities by fermentation. We can provide enough doses of a safe and effective vaccine for all Americans from just one acre of tobacco plants."

Current production of the vaccine involves an expensive fermentation process that can cause harmful side effects such as inflammation, flu-like symptoms and rashes. This has prompted some people to refuse to be vaccinated.

Seeking a safer and more effective alternative, Daniell and his colleagues injected the vaccine gene into the chloroplast genome of tobacco cells, partly because those plants grow much faster than carrots, tomatoes and coffee. They grew the cells for several weeks in Daniell’s laboratory. Tests showed the vaccine taken from the plants was just as potent as the one produced through fermentation but lacks the bacterial toxin that can cause harmful side effects.

Researchers then injected the vaccine into mice to immunize them against anthrax and sent the mice to NIH labs, where they survived doses of anthrax several times stronger than the amounts to which humans have been exposed.

The next step for the anthrax vaccine would involve a company working with NIH to conduct clinical trials. Human subjects would be injected only with the vaccine and not with anthrax itself, and scientists would then check the subjects’ immunity levels. The vaccine later could be mass-produced and stockpiled for emergencies.

Daniell conducted his study with part of a $1 million NIH grant and a $2 million U.S. Department of Agriculture grant that cover research related to genetic engineering in plants as a way to produce therapies for several diseases. Daniell’s work holds promise for treating other diseases, including diabetes and hepatitis, and improving vaccines for plague, cholera and other bioterrorism agents.

Daniell is developing a new technology that would enable vaccines to be administered orally and allow effective and less expensive treatments to be more accessible worldwide. He believes fruits and vegetables such as carrots and tomatoes are the keys to figuring out a way for people to take anthrax vaccines orally in capsules of dried plant cells that contain correct doses of the protective antigen.

If that research is successful, the needs for requiring doctors to administer the shots and for shipping vaccines in refrigerated trucks, both of which can be especially difficult in poorer nations, would be eliminated.

The military now administers the vaccine with three shots in the first four weeks, three more in the next 17 months and then annual booster shots, according to the Pentagon.

Daniell, who is the first UCF Trustee Chair in Life Sciences, began teaching at UCF in 1998. He has formed a biotechnology company called Chlorogen to apply his work in chloroplast genetic engineering. In 2004, he won UCF’s Pegasus Professor Award, the top honor given to a faculty member who excels in teaching, research and service. Last year, he also became only the 14th American in the last 222 years to be elected to the Italian National Academy of Sciences.

Chad Binette | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Seeking balanced networks: how neurons adjust their proteins during homeostatic scaling.

24.10.2016 | Life Sciences

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

More VideoLinks >>>