Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Bare metal stents deliver gene therapy to heart vessels with less inflammation in animal studies


Improved materials may allow stents, tiny metal scaffolds inserted into blood vessels, to better deliver beneficial genes to patients with heart disease, by reducing the risk of inflammation that often negates initial benefits. The new technique, using a compound that binds in an extremely thin layer to bare metal surfaces, may have potential uses in other areas of medicine that make use of metallic implants.

Cardiologists frequently treat heart disease patients now by using stents to expand partially blocked blood vessels and improve blood flow. However, new obstructions may gradually form within the stents themselves and dangerously narrow the passageway. A newer generation of stents releases drugs to counteract this renarrowing process, called restenosis, but the polymer coatings that initially hold the drugs to the stents may stimulate inflammation. The inflammation in turn leads to restenosis.

Researchers at The Children’s Hospital of Philadelphia have developed a novel technique to attach therapeutic genes to a stent’s bare metal surface. This technique allows the genes to help heal the surrounding blood vessels, while avoiding the inflammation caused by polymer coatings.

The research team reported their proof-of-principle study, using cell culture and animal models, in the early edition of the Proceedings of the National Academy of Sciences, published online this week.

"This is the first study to demonstrate successful delivery of a gene vector from a bare metal surface," said senior author Robert J. Levy, M.D., the William J. Rashkind Chair of Pediatric Cardiology at The Children’s Hospital of Philadelphia. A gene vector is a biological substance, in this case an adenovirus, capable of delivering a therapeutic gene to target cells.

Dr. Levy’s team created a unique water-soluble compound, polyallylamine biphosphonate, that binds to the stent’s metal alloy surface in a layer with the thickness of only a single molecule. The biphosphonate holds and gradually releases adenovirus particles of the type used to deliver therapeutic genes.

In cell cultures, the adenovirus successfully delivered genes from alloy samples to animal arterial smooth muscle cells. In a second experiment using rodents, the researchers detected gene expression with significantly lower restenosis in the carotid arteries of animals with the experimental stents, compared to control animals with conventional, polymer-coated stents.

The researchers used a therapeutic gene that encodes for a protein, inducible nitric oxide synthase (iNOS), in the carotid artery studies, because of iNOS’s ability to control cell damage in blood vessels. "However, in further studies, one might use a combination of therapeutic genes or different gene vectors, for even better results," said Dr. Levy.

Metallic implants are already widely used in medicine. Some examples are artificial joints and orthopedic pins and rods, pacemaker electrodes, and titanium tooth implants. "The results of our study may have broader implications for other diseases in which implantable medical devices may be used to deliver gene therapy," said Dr. Levy.

Dr. Levy’s co-authors included Ilia Fishbein, M.D., Ivan S. Alferiev, M.D., Origene Nyanguile, Richard Gaster, and Howard Felderman, of the Children’s Hospital Division of Cardiology. Co-authors from the University of Pennsylvania were John M. Vohs and Gordon S. Wong, of the Department of Chemical and Biomolecular Engineering; Hoon Choi and I-Wei Chen, of the Department of Material Science and Engineering; and Robert L. Wilensky, of the Cardiovascular Division of the Hospital of the University of Pennsylvania.

John Ascenzi | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>