Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study identifies key gene in development of connections between brain and spinal cord

14.12.2005


Research released at ACNP Annual Meeting



A new study, presented at the American College of Neuropsychopharmacology’s (ACNP) Annual Meeting, has identified a specific gene that is necessary for the development of connections between the brain and the spinal cord. This research, conducted by Stanford University through a grant from the National Institutes of Health (NIH), could be critical for future understanding of the development of the human brain and possibly the treatment of spinal cord injuries.

During fetal development, genes "instruct" nerve cells on how and where to develop. Researchers examined the plasticity of fetal cells to better understand at what developmental period cells are specialized (i.e., limited in their ability to take on new characteristics) or undifferentiated (i.e., able to be take on new function or characteristics).


In attempting to uncover key developmental moments in the brain, the team removed or "knocked out" the gene for Fezl, a DNA-binding protein, to observe its effect on brain development. Mice were used as the animal model because they serve as a powerful genetic representation of human brain circuitry. The major finding of the study was that in developing mice that lack Fezl, normal connections to the spinal cord failed to form. Instead, the brain cells that usually form the spinal cord made inappropriate connections to other parts of the brain. This result led the researchers to determine that Fezl is necessary for proper development of neural connections to the spinal cord.

"Normally, Fezl is required for certain brain cells to grow along the pathway that leads into the spinal cord. In the mice lacking the gene for Fezl, this pattern of spinal cord development was not observed," explained senior study author Susan McConnell, Ph.D., Professor of Biological Sciences at Stanford University. "These findings could have important implications in the future treatment of spinal cord injuries."

Though these findings have yet to be applied in a clinical setting, it is possible that researchers could utilize the findings about Fezl in stem cell research attempting to stimulate neuron growth to the spinal cord in injured adults. This protein and the gene that controls its production could be essential in understanding how to regenerate connections to the spinal cord that are severed during injury, which results in paralysis.

"The discovery of Fezl is a critical finding in unlocking the intricacies of human brain development," noted McConnell. "However, there is still much research to be done in identifying the key target genes in the brain. Fezl is another critical step in piecing together a complete picture of brain and spinal cord development."

Courtney Rees | EurekAlert!
Further information:
http://www.gymr.com

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>