Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study identifies key gene in development of connections between brain and spinal cord

14.12.2005


Research released at ACNP Annual Meeting



A new study, presented at the American College of Neuropsychopharmacology’s (ACNP) Annual Meeting, has identified a specific gene that is necessary for the development of connections between the brain and the spinal cord. This research, conducted by Stanford University through a grant from the National Institutes of Health (NIH), could be critical for future understanding of the development of the human brain and possibly the treatment of spinal cord injuries.

During fetal development, genes "instruct" nerve cells on how and where to develop. Researchers examined the plasticity of fetal cells to better understand at what developmental period cells are specialized (i.e., limited in their ability to take on new characteristics) or undifferentiated (i.e., able to be take on new function or characteristics).


In attempting to uncover key developmental moments in the brain, the team removed or "knocked out" the gene for Fezl, a DNA-binding protein, to observe its effect on brain development. Mice were used as the animal model because they serve as a powerful genetic representation of human brain circuitry. The major finding of the study was that in developing mice that lack Fezl, normal connections to the spinal cord failed to form. Instead, the brain cells that usually form the spinal cord made inappropriate connections to other parts of the brain. This result led the researchers to determine that Fezl is necessary for proper development of neural connections to the spinal cord.

"Normally, Fezl is required for certain brain cells to grow along the pathway that leads into the spinal cord. In the mice lacking the gene for Fezl, this pattern of spinal cord development was not observed," explained senior study author Susan McConnell, Ph.D., Professor of Biological Sciences at Stanford University. "These findings could have important implications in the future treatment of spinal cord injuries."

Though these findings have yet to be applied in a clinical setting, it is possible that researchers could utilize the findings about Fezl in stem cell research attempting to stimulate neuron growth to the spinal cord in injured adults. This protein and the gene that controls its production could be essential in understanding how to regenerate connections to the spinal cord that are severed during injury, which results in paralysis.

"The discovery of Fezl is a critical finding in unlocking the intricacies of human brain development," noted McConnell. "However, there is still much research to be done in identifying the key target genes in the brain. Fezl is another critical step in piecing together a complete picture of brain and spinal cord development."

Courtney Rees | EurekAlert!
Further information:
http://www.gymr.com

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>