Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study identifies key gene in development of connections between brain and spinal cord

14.12.2005


Research released at ACNP Annual Meeting



A new study, presented at the American College of Neuropsychopharmacology’s (ACNP) Annual Meeting, has identified a specific gene that is necessary for the development of connections between the brain and the spinal cord. This research, conducted by Stanford University through a grant from the National Institutes of Health (NIH), could be critical for future understanding of the development of the human brain and possibly the treatment of spinal cord injuries.

During fetal development, genes "instruct" nerve cells on how and where to develop. Researchers examined the plasticity of fetal cells to better understand at what developmental period cells are specialized (i.e., limited in their ability to take on new characteristics) or undifferentiated (i.e., able to be take on new function or characteristics).


In attempting to uncover key developmental moments in the brain, the team removed or "knocked out" the gene for Fezl, a DNA-binding protein, to observe its effect on brain development. Mice were used as the animal model because they serve as a powerful genetic representation of human brain circuitry. The major finding of the study was that in developing mice that lack Fezl, normal connections to the spinal cord failed to form. Instead, the brain cells that usually form the spinal cord made inappropriate connections to other parts of the brain. This result led the researchers to determine that Fezl is necessary for proper development of neural connections to the spinal cord.

"Normally, Fezl is required for certain brain cells to grow along the pathway that leads into the spinal cord. In the mice lacking the gene for Fezl, this pattern of spinal cord development was not observed," explained senior study author Susan McConnell, Ph.D., Professor of Biological Sciences at Stanford University. "These findings could have important implications in the future treatment of spinal cord injuries."

Though these findings have yet to be applied in a clinical setting, it is possible that researchers could utilize the findings about Fezl in stem cell research attempting to stimulate neuron growth to the spinal cord in injured adults. This protein and the gene that controls its production could be essential in understanding how to regenerate connections to the spinal cord that are severed during injury, which results in paralysis.

"The discovery of Fezl is a critical finding in unlocking the intricacies of human brain development," noted McConnell. "However, there is still much research to be done in identifying the key target genes in the brain. Fezl is another critical step in piecing together a complete picture of brain and spinal cord development."

Courtney Rees | EurekAlert!
Further information:
http://www.gymr.com

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>