Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New UW study offers strategy for treatment of fatal nervous system disorder

13.12.2005


Working with mice, University of Wisconsin-Madison researchers have developed the basis for a therapeutic strategy that could provide hope for children afflicted with Krabbe’s disease, a fatal nervous system disorder.

Writing this week (Dec. 12, 2005) in the Proceedings of the National Academy of Sciences (PNAS), a team of researchers at the UW-Madison School of Veterinary Medicine describes experiments that effectively promoted the ability of defective cells to take up and utilize an enzyme that is essential for the maintenance of a critical sheathing of nerve fibers.

The work centers on devising strategies to treat inherited diseases of the nervous system in which cells fail to maintain myelin, a protective sheathing that envelops nerve fibers and acts like the insulation on an electric wire. Myelin ensures the effective transmission of the signals routinely conducted by the nervous system. For those afflicted with Krabbe’s disease, the loss of myelin results in arrested motor and mental development, seizures, paralysis and, ultimately, death.



The Wisconsin experiments, led by Ian Duncan, a UW-Madison professor of medical sciences who is an expert on diseases of myelin, explored how cells obtained from a mouse model of Krabbe’s disease could be reinvigorated by replacing a missing enzyme, and thus allow the healthy maintenance of myelin.

In the case of Krabbe’s disease, myelination begins normally in early development. But the absence in myelin-forming cells of a key enzyme known as galactocerebrosidase leads to the death of the cells and, subsequently, the loss of myelin. "Our hypothesis was that if you provided the (flawed) myelinating cells with the enzyme, the cells would maintain the myelin as healthy cells would," says Duncan, the senior author of the PNAS paper who planned and conducted the experiments with lead author Yoichi Kondo, a postdoctoral fellow working in Duncan’s lab.

Simply supplying the enzyme directly to the brain and spinal cord is complicated by a natural barrier -- the blood-brain barrier -- that makes the delivery of agents like the enzyme to the brain difficult.

"To eliminate the barrier, we changed the paradigm by transplanting enzyme-deficient cells into the brain and spinal cord of another type of mouse which can provide the enzyme," explains Duncan.

The Wisconsin group isolated progenitor cells from the mouse model of Krabbe’s disease. Transplanting the cells to the brain and spinal cord of another type of mouse that lacks any myelin, the group observed that the implanted cells took up the enzyme from the host cells and sparked widespread and persistent myelination of the brain and spinal cord.

"The donor cells are stable and survive and, biochemically, enzyme levels in the graft were restored to normal," says Kondo.

Enzyme replacement therapy, Duncan notes, is not a new idea for treating such inherited demyelinating diseases. For example, work by other groups involving transplants of bone marrow and umbilical cord blood in Krabbe’s patients have been attempted with some success.

But no one knew if the missing enzyme could be replaced in key cells known as oligodendrocytes, thus allowing maintenance of stable myelin throughout the nervous system.

"This experimental strategy proves that oligodendrocytes can survive and maintain myelin when transplanted into an environment where the missing enzyme is available," says Kondo.

Krabbe’s disease is perhaps best known to the public through the efforts of Hall of Fame quarterback Jim Kelly, whose late son Hunter was afflicted with the disease and who established a foundation, Hunter’s Hope, to promote awareness and research. The new study was funded by Hunter’s Hope.

Krabbe’s disease is one of a number of diseases caused by the inability to produce and maintain myelin. It afflicts about 1 in every 100,000 people and treatment options are limited at best.

The new work, the authors emphasize, provides proof of principle for a new therapeutic strategy, but any therapy developed on the group’s new insights will require further study.

Ian Duncan | EurekAlert!
Further information:
http://www.vetmed.wisc.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>