Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cell phones, driving don’t mix


Most people can rather efficiently walk and chew gum at the same time, but when it comes to more complicated "multi-tasking" – like driving and talking on a cell phone – there is a price to pay.

And no one, it seems, is immune.

"There is a cost for switching from one task to another and that cost can be in response time or in accuracy," said

Mei-Ching Lien, an assistant professor of psychology at Oregon State University. "Even with a seemingly simple task, structural cognitive limitations can prevent you from efficiently switching to a new task."

Psychologists who study multi-tasking have argued for years about whether these "information bottlenecks" occur because people are inherently lazy, or because they have a fundamental inability to switch from one task to another. New studies by Lien and her colleagues at the NASA Ames Research Center in California suggest it is the latter.

Results of their study have been published in the Journal of Experimental Psychology.

In their study the researchers asked volunteers to respond to a variety of auditory and visual cues then measured the responses. When the volunteers prepared for one task, such as responding to the color red, their responses were swift and accurate. When the researchers added a second element – the recognition of shapes as well as color – the task switch considerably delayed the responses, even when the volunteers were prepared for it.

"People are surprised that there is such a delay," Lien said. "Practice can help a person reduce the ’cost’ of switching tasks, but it apparently cannot eliminate that cost."

Lien said the study can be applied to the real world, especially to drivers who talk on cell phones. On the surface, she said, it appears that drivers are trying to accomplish just two tasks – driving and conversing. But each task is complicated and multi-faceted, greatly increasing the "cost" of switching. The result: inattention and slow reaction times.

"A lot of people think talking on the cell phone while driving is natural, but each time someone asks a question or changes the subject, it’s like taking on a new task," Lien said. "It requires a certain amount of thought and preparation. It’s actually quite different than listening to the radio, where you don’t need to respond.

"And it’s also different from talking to a passenger in the vehicle," she added. "In most cases, a passenger can observe when there is a dangerous traffic situation and keep quiet. But someone calling you on a cell phone won’t have a clue."

There are individual differences in the costs of multi-tasking, Lien said. In her lab studies, a typical response to a single stimulus might take 300 milliseconds. Adding a second task increases the response to about 800 milliseconds. A millisecond is 1/1000th of a second, so the delay may not seem like much – until you extend the difference to a car driving 60 miles an hour and realize the response rate more than doubles, Lien said.

In her lab studies, she has yet to test any volunteers who are immune to delays in multi-tasking, though she says some students do much better than others.

"I have to say that the best ones are those who play a lot of video games," she pointed out. "Those are lab studies, however, and not driving tests."

She became interested in multi-tasking while working at the NASA Ames Research Center in Moffett, Calif., where she was part of a team analyzing cockpit design and pilot function. One of the projects focused on how much information can safely and efficiently be included on screens and monitors so the pilots’ delay and loss of accuracy are minimized.

"We learned to modify some of the screens to mitigate their weaknesses," she said.

While Lien’s studies suggest that simplifying tasks leads to greater efficiency, technology is complicating everything we do – including driving. Drivers often use cell phones, CD players, global positioning systems, radar detectors, complicated dashboards and other devices. At the same time, they must navigate increasing traffic, read a plethora of signs, and handle other distractions.

"We may be undermining our ability to drive safely," Lien said.

Mei-Ching Lien | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>