Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell phones, driving don’t mix

12.12.2005


Most people can rather efficiently walk and chew gum at the same time, but when it comes to more complicated "multi-tasking" – like driving and talking on a cell phone – there is a price to pay.



And no one, it seems, is immune.

"There is a cost for switching from one task to another and that cost can be in response time or in accuracy," said


Mei-Ching Lien, an assistant professor of psychology at Oregon State University. "Even with a seemingly simple task, structural cognitive limitations can prevent you from efficiently switching to a new task."

Psychologists who study multi-tasking have argued for years about whether these "information bottlenecks" occur because people are inherently lazy, or because they have a fundamental inability to switch from one task to another. New studies by Lien and her colleagues at the NASA Ames Research Center in California suggest it is the latter.

Results of their study have been published in the Journal of Experimental Psychology.

In their study the researchers asked volunteers to respond to a variety of auditory and visual cues then measured the responses. When the volunteers prepared for one task, such as responding to the color red, their responses were swift and accurate. When the researchers added a second element – the recognition of shapes as well as color – the task switch considerably delayed the responses, even when the volunteers were prepared for it.

"People are surprised that there is such a delay," Lien said. "Practice can help a person reduce the ’cost’ of switching tasks, but it apparently cannot eliminate that cost."

Lien said the study can be applied to the real world, especially to drivers who talk on cell phones. On the surface, she said, it appears that drivers are trying to accomplish just two tasks – driving and conversing. But each task is complicated and multi-faceted, greatly increasing the "cost" of switching. The result: inattention and slow reaction times.

"A lot of people think talking on the cell phone while driving is natural, but each time someone asks a question or changes the subject, it’s like taking on a new task," Lien said. "It requires a certain amount of thought and preparation. It’s actually quite different than listening to the radio, where you don’t need to respond.

"And it’s also different from talking to a passenger in the vehicle," she added. "In most cases, a passenger can observe when there is a dangerous traffic situation and keep quiet. But someone calling you on a cell phone won’t have a clue."

There are individual differences in the costs of multi-tasking, Lien said. In her lab studies, a typical response to a single stimulus might take 300 milliseconds. Adding a second task increases the response to about 800 milliseconds. A millisecond is 1/1000th of a second, so the delay may not seem like much – until you extend the difference to a car driving 60 miles an hour and realize the response rate more than doubles, Lien said.

In her lab studies, she has yet to test any volunteers who are immune to delays in multi-tasking, though she says some students do much better than others.

"I have to say that the best ones are those who play a lot of video games," she pointed out. "Those are lab studies, however, and not driving tests."

She became interested in multi-tasking while working at the NASA Ames Research Center in Moffett, Calif., where she was part of a team analyzing cockpit design and pilot function. One of the projects focused on how much information can safely and efficiently be included on screens and monitors so the pilots’ delay and loss of accuracy are minimized.

"We learned to modify some of the screens to mitigate their weaknesses," she said.

While Lien’s studies suggest that simplifying tasks leads to greater efficiency, technology is complicating everything we do – including driving. Drivers often use cell phones, CD players, global positioning systems, radar detectors, complicated dashboards and other devices. At the same time, they must navigate increasing traffic, read a plethora of signs, and handle other distractions.

"We may be undermining our ability to drive safely," Lien said.

Mei-Ching Lien | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>