Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


ORNL-led study shows forests thrive with increased CO2 levels


Forest productivity may be significantly greater in an atmosphere enriched with carbon dioxide, according to findings released today that challenge recent reports that question the importance of carbon dioxide fertilization.

The study, performed by researchers at the Department of Energy’s Oak Ridge National Laboratory and 10 other institutions in the United States and Europe, revealed a strong relationship between productivity of forest plots in the current atmosphere and productivity in plots experimentally enriched with carbon dioxide.

"The median response indicated a 23 percent increase in productivity in the future atmosphere," said ORNL’s Rich Norby, lead author of the paper to be published Dec. 13 in the Proceedings of the National Academy of Sciences. "What was especially surprising to the research team was the consistency of the response across a wide range of productivity."

Researchers analyzed data from four experiments in which young forest stands were exposed for multiple years to an atmosphere with a carbon dioxide concentration predicted to occur in the middle of this century. The experiments were conducted in a deciduous forest in Tennessee, a pine forest in North Carolina, a young hardwood stand in Wisconsin and a high-productivity poplar plantation in Italy.

The team calculated net primary productivity - the annual fixation of carbon by green plants into organic matter - for each of the sites from data on wood, leaf and fine-root production. The results proved surprising.

"When we got together to analyze these data, we expected to spend our time explaining the differences between sites," said Norby, a member of ORNL’s Environmental Sciences Division. "We were really surprised and excited when all of the data fell neatly onto a single line."

More detailed analysis of the data revealed the mechanisms of the forest productivity response. In forest stands with a relatively low amount of leaf area, the response to elevated carbon dioxide levels was explained by increased absorption of light. With greater leaf area, however, the response was an increased efficiency of conversion of light energy to organic matter. In separating the overall response into leaf area and light-use efficiency, the analysis meshes well with broader scale analyses based on satellite imagery, Norby said.

Norby notes that this analysis will be especially valuable as a benchmark to evaluate predictions of ecosystem and global models.

"Climate change predictions are dependent on assumptions about the interaction between the biosphere and atmosphere," Norby said. "However, the contribution of carbon dioxide fertilization to the future carbon global carbon cycle has been uncertain and the models are poorly constrained by experimental data. The close agreement of the productivity predictions of models with the new experimental data should add confidence to overall model results."

Norby cautioned against viewing these results as a reason to ignore the steadily increasing amount of carbon dioxide in the atmosphere.

"Although carbon dioxide fertilization of forests might slow the rate of increase of atmospheric carbon dioxide, a 23 percent increase in productivity is insufficient to stabilize the concentration in the atmosphere," he said. "The increase in productivity demonstrated in these experiments will most likely be tempered by the stresses of climate warming, ozone pollution or insufficient nitrogen supply. In addition, some of the increased organic matter entering the forest is not sequestered in wood but is rapidly returned to the atmosphere. Understanding the controls on carbon processing by ecosystems remains a priority research challenge."

This study, funded primarily the DOE’s Office of Science, Biological and Environmental Research and the National Science Foundation, reinforces earlier findings and challenges reports that question the importance of carbon dioxide fertilization based on observations of a few trees.

UT-Battelle manages Oak Ridge National Laboratory for the Department of Energy.

Ron Walli | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>