Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ORNL-led study shows forests thrive with increased CO2 levels

09.12.2005


Forest productivity may be significantly greater in an atmosphere enriched with carbon dioxide, according to findings released today that challenge recent reports that question the importance of carbon dioxide fertilization.



The study, performed by researchers at the Department of Energy’s Oak Ridge National Laboratory and 10 other institutions in the United States and Europe, revealed a strong relationship between productivity of forest plots in the current atmosphere and productivity in plots experimentally enriched with carbon dioxide.

"The median response indicated a 23 percent increase in productivity in the future atmosphere," said ORNL’s Rich Norby, lead author of the paper to be published Dec. 13 in the Proceedings of the National Academy of Sciences. "What was especially surprising to the research team was the consistency of the response across a wide range of productivity."


Researchers analyzed data from four experiments in which young forest stands were exposed for multiple years to an atmosphere with a carbon dioxide concentration predicted to occur in the middle of this century. The experiments were conducted in a deciduous forest in Tennessee, a pine forest in North Carolina, a young hardwood stand in Wisconsin and a high-productivity poplar plantation in Italy.

The team calculated net primary productivity - the annual fixation of carbon by green plants into organic matter - for each of the sites from data on wood, leaf and fine-root production. The results proved surprising.

"When we got together to analyze these data, we expected to spend our time explaining the differences between sites," said Norby, a member of ORNL’s Environmental Sciences Division. "We were really surprised and excited when all of the data fell neatly onto a single line."

More detailed analysis of the data revealed the mechanisms of the forest productivity response. In forest stands with a relatively low amount of leaf area, the response to elevated carbon dioxide levels was explained by increased absorption of light. With greater leaf area, however, the response was an increased efficiency of conversion of light energy to organic matter. In separating the overall response into leaf area and light-use efficiency, the analysis meshes well with broader scale analyses based on satellite imagery, Norby said.

Norby notes that this analysis will be especially valuable as a benchmark to evaluate predictions of ecosystem and global models.

"Climate change predictions are dependent on assumptions about the interaction between the biosphere and atmosphere," Norby said. "However, the contribution of carbon dioxide fertilization to the future carbon global carbon cycle has been uncertain and the models are poorly constrained by experimental data. The close agreement of the productivity predictions of models with the new experimental data should add confidence to overall model results."

Norby cautioned against viewing these results as a reason to ignore the steadily increasing amount of carbon dioxide in the atmosphere.

"Although carbon dioxide fertilization of forests might slow the rate of increase of atmospheric carbon dioxide, a 23 percent increase in productivity is insufficient to stabilize the concentration in the atmosphere," he said. "The increase in productivity demonstrated in these experiments will most likely be tempered by the stresses of climate warming, ozone pollution or insufficient nitrogen supply. In addition, some of the increased organic matter entering the forest is not sequestered in wood but is rapidly returned to the atmosphere. Understanding the controls on carbon processing by ecosystems remains a priority research challenge."

This study, funded primarily the DOE’s Office of Science, Biological and Environmental Research and the National Science Foundation, reinforces earlier findings and challenges reports that question the importance of carbon dioxide fertilization based on observations of a few trees.

UT-Battelle manages Oak Ridge National Laboratory for the Department of Energy.

Ron Walli | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Studies and Analyses:

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

nachricht Pan-European study on “Smart Engineering”
30.03.2017 | IPH - Institut für Integrierte Produktion Hannover gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA laser communications to provide Orion faster connections

30.03.2017 | Physics and Astronomy

Reusable carbon nanotubes could be the water filter of the future, says RIT study

30.03.2017 | Studies and Analyses

Unique genome architectures after fertilisation in single-cell embryos

30.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>