Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inflammation linked to chronic pain: Study

09.12.2005


An inflamed injury may increase levels of a protein responsible for persistent pain, causing the brain to mimic pain long after source has disappeared, says U of T researchers. The findings could have serious implications for the millions of Canadians who suffer from chronic pain.



The study, published in the current issue of the Journal of Neuroscience, shows how inflammation in mice increases NR2B proteins – proteins that facilitate nerve cell communication – and imprint a painful response in brain even after the stimulus is removed. "What we’re interested in uncovering are the molecular mechanisms that can turn early pain into persistent pain," says Professor Min Zhuo of physiology, EJLB-CIHR Michael Smith Chair in Neurosciences and Mental Health and lead author of the study. "We believe that the body’s inflammatory response helps to etch the initial pain into our memory."

Normally when a mouse or a person experiences a painful event, receptors in the injury site send an electrical impulse up the spine and to the brain. The signal triggers receptors called glutamate AMPA and kainate, which flare up initially but do not directly alter the physiology of the cells. When the painful event also triggers inflammation, the nerves send extra information to the normally dormant NR2B receptors – receptors that receive messages and then produce physiological effects in the cell.


In the study, researchers injected a chemical irritant into the hind paws of mice, causing inflammation. They then tracked brain activity in the anterior cingulate cortex (ACC) – a region of the brain associated with pain and other functions such as decision-making and emotion. In tests performed one hour, six hours and one day after injection, they found that NR2B protein levels had increased over time. Previous research had already established a link between the protein and chronic pain. In an earlier study, Zhuo demonstrated that mice initially genetically enhanced with NR2B to boost memory and learning abilities also became acutely aware of minor pain for long periods of time. "Persistent pain caused by injury, learning and memory share the same common molecular mechanisms," Zhuo says. "By identifying these mechanisms we can greatly facilitate the treatment of chronic pain."

Zhuo hopes the findings will one day be used to create therapeutic solutions to conditions such as allodynia – a condition where even a gentle touch produces pain. Currently, pain-blocking drugs also target other brain activity – not just NR2B receptors – and can also block acute pain that acts as a body’s warning system.

"It’s essential that therapies don’t block the body’s entire pain system as pain often plays a valuable role," Zhuo says. "For instance, acute and immediate pain often tells us to remove ourselves from harm such as accidentally touching a hot plate. The key is to find a way to develop drugs that target only persistent pain thereby improving the patient’s quality of living."

Karen Kelly | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

NASA Protects its super heroes from space weather

17.08.2017 | Physics and Astronomy

Spray-on electric rainbows: Making safer electrochromic inks

17.08.2017 | Materials Sciences

Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

17.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>