Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inflammation linked to chronic pain: Study

09.12.2005


An inflamed injury may increase levels of a protein responsible for persistent pain, causing the brain to mimic pain long after source has disappeared, says U of T researchers. The findings could have serious implications for the millions of Canadians who suffer from chronic pain.



The study, published in the current issue of the Journal of Neuroscience, shows how inflammation in mice increases NR2B proteins – proteins that facilitate nerve cell communication – and imprint a painful response in brain even after the stimulus is removed. "What we’re interested in uncovering are the molecular mechanisms that can turn early pain into persistent pain," says Professor Min Zhuo of physiology, EJLB-CIHR Michael Smith Chair in Neurosciences and Mental Health and lead author of the study. "We believe that the body’s inflammatory response helps to etch the initial pain into our memory."

Normally when a mouse or a person experiences a painful event, receptors in the injury site send an electrical impulse up the spine and to the brain. The signal triggers receptors called glutamate AMPA and kainate, which flare up initially but do not directly alter the physiology of the cells. When the painful event also triggers inflammation, the nerves send extra information to the normally dormant NR2B receptors – receptors that receive messages and then produce physiological effects in the cell.


In the study, researchers injected a chemical irritant into the hind paws of mice, causing inflammation. They then tracked brain activity in the anterior cingulate cortex (ACC) – a region of the brain associated with pain and other functions such as decision-making and emotion. In tests performed one hour, six hours and one day after injection, they found that NR2B protein levels had increased over time. Previous research had already established a link between the protein and chronic pain. In an earlier study, Zhuo demonstrated that mice initially genetically enhanced with NR2B to boost memory and learning abilities also became acutely aware of minor pain for long periods of time. "Persistent pain caused by injury, learning and memory share the same common molecular mechanisms," Zhuo says. "By identifying these mechanisms we can greatly facilitate the treatment of chronic pain."

Zhuo hopes the findings will one day be used to create therapeutic solutions to conditions such as allodynia – a condition where even a gentle touch produces pain. Currently, pain-blocking drugs also target other brain activity – not just NR2B receptors – and can also block acute pain that acts as a body’s warning system.

"It’s essential that therapies don’t block the body’s entire pain system as pain often plays a valuable role," Zhuo says. "For instance, acute and immediate pain often tells us to remove ourselves from harm such as accidentally touching a hot plate. The key is to find a way to develop drugs that target only persistent pain thereby improving the patient’s quality of living."

Karen Kelly | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>