Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD researchers report results of children’s backpack study

06.12.2005


As long as children have carried their books and belongings in backpacks they have complained of shoulder and back pain. A University of California, San Diego (UCSD) School of Medicine-led team found that how loads are distributed under backpack straps may help identify the source of shoulder and back pain in children.



The study, published in the December 5, 2005 issue of the Archives of Pediatric and Adolescent Medicine, concludes that the average backpack load that children are now carrying should be reduced.

Excessive pressure on the shoulder from too much backpack weight may be causing shoulder pain, and an uneven backpack load may contribute to low back pain. The researchers hope their study will influence and improve future backpack design.


The research team, led by Principal Investigators Brandon Macias, B.A. of UCSD’s Department of Orthopaedic Surgery, and Gita Murthy, Ph.D. who was a fellow in UCSD’s Department of Anesthesiology during the time of the research, studied five boys and five girls, aged 13 years old. Each child’s backpack was fitted with pressure sensors on the shoulder straps. The pressure sensors are the same type as those that measure standard blood pressure. The children wore standard identical backpacks first carrying 10% of their body weight, then 20% and finally 30%. Macias says the group decided to study the backpack loads because there have been no studies connecting physiological pain and backpack loading.

Prior to loading each backpack the children’s backpack shoulder straps were positioned with sensors to obtain contact pressure measurements over a 30-second recording period. The researchers noted that contact pressures measured significantly higher on the right side than the left side at all bodyweight levels and determined that it may have been due to posture, a factor they suggest warrants further study. The authors said that other studies have indicated that posture changed when shoulders were asymmetrically loaded, adding that long-term asymmetrical loading on the shoulders may alter the spine curvature and produce back pain.

With each weight level the children reported increased perceived pain levels. Surface pressures measured by the investigators were higher than the pressure threshold to obstruct normal skin and muscle blood flow, measured at 30mmHg.

According to previous studies children commonly carry backpack loads of 22% of their body weight. The study found that pressures at 20% of body weight measured 70 mmHg on the left shoulder and 110 mmHg on the right shoulder -- skin surface pressures that are more than double and triple the threshold for reduced blood flow.

Murthy states, "The concern of heavy backpacks and back and shoulder pain to parents is not new. However, the objective data that we have published is new and important. The more objective data that the public has, the more educated they become, and perhaps more inclined to change the way children carry backpacks."

"Furthermore, manufacturers and designers of backpacks often try to optimize design based upon the data available in the literature," Murthy states. "Our shoulder loading data may help designers and engineers design a wider shoulder strap, for example, that will help spread the load of the backpack."

Murthy adds that the Consumer Product Safety Commission (CPSC) estimates that annually there are nearly 7,500 emergency room visits due to injuries related to backpacks or book bags (National Electronic Injury Surveillance System, Consumer Product Safety Commission, 2004).

The research team hopes that parents will help their children avoid using heavy backpacks for prolonged periods and prevent backpack pain and related injuries.

The researchers recommend that concentrated backpack loads be minimized and the way children carry backpacks be optimized to promote safety and comfort, adding that the reported backpack averages of 22% of body weight is too high. They state it is difficult to give an overall recommendation because of different body types and life styles, but emphasize that the average load that children are carrying now needs to be reduced because the high pressure on the shoulder may be causing the shoulder pain, and asymmetric loads may contribute to low back pain.

"Previous studies have measured general pain and heavy backpacks," Macias says. "But, they have not correlated backpack load distribution and pain. This correlation is important to establish how much load in a backpack is too much."

The researchers state they are the first group to look at backpack shoulder loading in children quantitatively. Previous research has focused on questionnaires, reported pain, and measuring the loads inside children’s backpacks. Measuring the amount of pressure and its distribution on the shoulders helps identify the difference between shoulder pain versus back pain.

Jeffree Itrich | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Studies and Analyses:

nachricht Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>