Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Finds That Nutritionally Enhanced Rice Reduces Iron Deficiency

05.12.2005


Study Finds That Nutritionally Enhanced Rice Reduces Iron Deficiency


Breakthrough may lead to improved nutrition for millions of poor people

Breeding rice with higher levels of iron can have an important impact on reducing micronutrient malnutrition, according to a new study in the Journal of Nutrition. The research, conducted by scientists from the Philippines and the United States, is a major step forward in the battle against iron deficiency, one of the developing world’s most debilitating and intractable public health problems affecting nearly 2 billion people.

The lead authors of the article, Dr. Jere Haas from the Division of Nutritional Sciences at Cornell University, Dr. John Beard and Dr. Laura E. Murray-Kolb from the Department of Nutritional Sciences at Pennsylvania State University, Prof. Angelita del Mundo and Prof. Angelina Felix from the University of the Philippines Los Baños, and Dr. Glenn Gregorio from the International Rice Research Institute (IRRI), oversaw a study in which religious sisters in ten convents in the Philippines included the nutritionally enhanced rice in their diets. After 9 months, the women had significantly higher levels of total body iron in their blood.



“This study documents a major breakthrough in the battle to prevent micronutrient malnutrition,” said Dr. Robert Zeigler, director general of IRRI. “These results are especially important for rice-eating regions of the world where more than 3 billion of the world’s poor and undernourished live.”

The iron-dense variety of rice used in the research (known technically as IR68144-3B-2-2-3) was developed and grown at IRRI and then tested by an international team of researchers from Cornell University, Pennsylvania State University, the University of the Philippines Los Baños and IRRI. The research initiative was originally spearheaded and funded by the Washington-based International Food Policy Research Institute (IFPRI), with support from the Asian Development Bank and the Micronutrient Initiative. HarvestPlus, an international, interdisciplinary research program focused on breeding crops for better nutrition and led by IFPRI and the International Center for Tropical Agriculture (CIAT), will continue to work with these research findings and partners to increase the level of nutrient density in rice to be even more effective.

“We view this study as a ‘proof of concept,’” said Zeigler. “We now know that, if plants are bred with higher levels of iron and other micronutrients, they will improve the nutritional status of people who consume them. This has dramatic implications.”

Through a process known as “biofortification,” plant breeders are developing staple foods with higher levels of essential micronutrients. This study demonstrates that iron-biofortified rice can raise levels of stored iron in the body and can significantly contribute to reducing micronutrient malnutrition.

“In the past, we relied on supplements and fortification to overcome vitamin and mineral deficiencies,” said Howarth Bouis, director of HarvestPlus. “Now we know that biofortification also works, giving us an additional tool in this crucial battle.”

The United Nations and other donors spend millions of dollars a year on iron supplements and other strategies to ease the enormous damage wreaked by iron deficiency and related conditions. Iron deficiency can affect a child’s physical and mental development, and each year causes more than 60,000 maternal deaths during pregnancy and childbirth. Recent statistics from the Micronutrients Initiative of Canada and the United Nations Children’s Fund indicate that more than half of the developing world’s children between 6 months and 2 years of age are iron-deficient during the critical period of their growth when brain development occurs. Many of the worst affected are found among Asia’s poorest, but iron deficiency is also widespread in Africa, affecting more than 80 percent of young children in some countries.

Nutritional experts correctly advise that the best solution is a balanced diet of fruit, vegetables and meat, but, for the very poor, such choices are simply not possible and so they depend predominantly on staple foods to stave off day-to-day hunger. This is especially true in isolated rural areas where under-resourced and overstretched public health systems struggle to improve the overall nutrition of the world’s poor through nutritional supplements. In these areas, commercially fortified foods also have difficulty making it into the mouths of the hungry and so malnutrition persists.

“The fact that biofortified foods can have an impact on nutritional status in humans is an enormously exciting breakthrough,” Zeigler noted. “It is time to shift the agricultural research agenda, and the rice research agenda in particular, away from quantity and toward better-quality food. This may be the start of a nutritional revolution—a very appropriate follow-on from the Green Revolution and one that is desperately needed by millions of the world’s poor and undernourished.”

The International Rice Research Institute (IRRI) is the world’s leading rice research and training center. Based in the Philippines and with offices in 10 other Asian countries, it is an autonomous, nonprofit institution focused on improving the well-being of present and future generations of rice farmers and consumers, particularly those with low incomes, while preserving natural resources. IRRI is one of 15 centers funded through the Consultative Group on International Agricultural Research (CGIAR), an association of public and private donor agencies. Please visit the Web sites of the CGIAR (www.cgiar.org) or Future Harvest Foundation (www.futureharvest.org), a nonprofit organization that builds awareness and supports food and environmental research.

For information, contact Duncan Macintosh, IRRI, DAPO Box 7777, Metro Manila, Philippines; tel +63-2-580-5600; fax: +63-2-580-5699; email d.macintosh@cgiar.org or Johnny Goloyugo at j.goloyugo@cgiar.org

Duncan Macintosh | EurekAlert!
Further information:
http://www.futureharvest.org
http://www.cgiar.org

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>