Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Finds That Nutritionally Enhanced Rice Reduces Iron Deficiency

05.12.2005


Study Finds That Nutritionally Enhanced Rice Reduces Iron Deficiency


Breakthrough may lead to improved nutrition for millions of poor people

Breeding rice with higher levels of iron can have an important impact on reducing micronutrient malnutrition, according to a new study in the Journal of Nutrition. The research, conducted by scientists from the Philippines and the United States, is a major step forward in the battle against iron deficiency, one of the developing world’s most debilitating and intractable public health problems affecting nearly 2 billion people.

The lead authors of the article, Dr. Jere Haas from the Division of Nutritional Sciences at Cornell University, Dr. John Beard and Dr. Laura E. Murray-Kolb from the Department of Nutritional Sciences at Pennsylvania State University, Prof. Angelita del Mundo and Prof. Angelina Felix from the University of the Philippines Los Baños, and Dr. Glenn Gregorio from the International Rice Research Institute (IRRI), oversaw a study in which religious sisters in ten convents in the Philippines included the nutritionally enhanced rice in their diets. After 9 months, the women had significantly higher levels of total body iron in their blood.



“This study documents a major breakthrough in the battle to prevent micronutrient malnutrition,” said Dr. Robert Zeigler, director general of IRRI. “These results are especially important for rice-eating regions of the world where more than 3 billion of the world’s poor and undernourished live.”

The iron-dense variety of rice used in the research (known technically as IR68144-3B-2-2-3) was developed and grown at IRRI and then tested by an international team of researchers from Cornell University, Pennsylvania State University, the University of the Philippines Los Baños and IRRI. The research initiative was originally spearheaded and funded by the Washington-based International Food Policy Research Institute (IFPRI), with support from the Asian Development Bank and the Micronutrient Initiative. HarvestPlus, an international, interdisciplinary research program focused on breeding crops for better nutrition and led by IFPRI and the International Center for Tropical Agriculture (CIAT), will continue to work with these research findings and partners to increase the level of nutrient density in rice to be even more effective.

“We view this study as a ‘proof of concept,’” said Zeigler. “We now know that, if plants are bred with higher levels of iron and other micronutrients, they will improve the nutritional status of people who consume them. This has dramatic implications.”

Through a process known as “biofortification,” plant breeders are developing staple foods with higher levels of essential micronutrients. This study demonstrates that iron-biofortified rice can raise levels of stored iron in the body and can significantly contribute to reducing micronutrient malnutrition.

“In the past, we relied on supplements and fortification to overcome vitamin and mineral deficiencies,” said Howarth Bouis, director of HarvestPlus. “Now we know that biofortification also works, giving us an additional tool in this crucial battle.”

The United Nations and other donors spend millions of dollars a year on iron supplements and other strategies to ease the enormous damage wreaked by iron deficiency and related conditions. Iron deficiency can affect a child’s physical and mental development, and each year causes more than 60,000 maternal deaths during pregnancy and childbirth. Recent statistics from the Micronutrients Initiative of Canada and the United Nations Children’s Fund indicate that more than half of the developing world’s children between 6 months and 2 years of age are iron-deficient during the critical period of their growth when brain development occurs. Many of the worst affected are found among Asia’s poorest, but iron deficiency is also widespread in Africa, affecting more than 80 percent of young children in some countries.

Nutritional experts correctly advise that the best solution is a balanced diet of fruit, vegetables and meat, but, for the very poor, such choices are simply not possible and so they depend predominantly on staple foods to stave off day-to-day hunger. This is especially true in isolated rural areas where under-resourced and overstretched public health systems struggle to improve the overall nutrition of the world’s poor through nutritional supplements. In these areas, commercially fortified foods also have difficulty making it into the mouths of the hungry and so malnutrition persists.

“The fact that biofortified foods can have an impact on nutritional status in humans is an enormously exciting breakthrough,” Zeigler noted. “It is time to shift the agricultural research agenda, and the rice research agenda in particular, away from quantity and toward better-quality food. This may be the start of a nutritional revolution—a very appropriate follow-on from the Green Revolution and one that is desperately needed by millions of the world’s poor and undernourished.”

The International Rice Research Institute (IRRI) is the world’s leading rice research and training center. Based in the Philippines and with offices in 10 other Asian countries, it is an autonomous, nonprofit institution focused on improving the well-being of present and future generations of rice farmers and consumers, particularly those with low incomes, while preserving natural resources. IRRI is one of 15 centers funded through the Consultative Group on International Agricultural Research (CGIAR), an association of public and private donor agencies. Please visit the Web sites of the CGIAR (www.cgiar.org) or Future Harvest Foundation (www.futureharvest.org), a nonprofit organization that builds awareness and supports food and environmental research.

For information, contact Duncan Macintosh, IRRI, DAPO Box 7777, Metro Manila, Philippines; tel +63-2-580-5600; fax: +63-2-580-5699; email d.macintosh@cgiar.org or Johnny Goloyugo at j.goloyugo@cgiar.org

Duncan Macintosh | EurekAlert!
Further information:
http://www.futureharvest.org
http://www.cgiar.org

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>