Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSF study finds nerve regeneration is possible in spinal cord injuries

05.12.2005


A team of scientists at UCSF has made a critical discovery that may help in the development of techniques to promote functional recovery after a spinal cord injury.



By stimulating nerve cells in laboratory rats at the time of the injury and then again one week later, the scientists were able to increase the growth capacity of nerve cells and to sustain that capacity. Both factors are critical for nerve regeneration.

The study, reported in the November 15 issue of the Proceedings of the National Academy of Sciences, builds on earlier findings in which the researchers were able to induce cell growth by manipulating the nervous system before a spinal cord injury, but not after.


Key to the research is an important difference in the properties of the nerve fibers of the central nervous system (CNS), which consists of the brain and spinal cord, and those of the peripheral nervous system (PNS), which is the network of nerve fibers that extends throughout the body.

Nerve cells normally grow when they are young and stop when they are mature. When an injury occurs in CNS cells, the cells are unable to regenerate on their own. In PNS cells, however, an injury can stimulate the cells to regrow. PNS nerve regeneration makes it possible for severed limbs to be surgically reattached to the body and continue to grow and regain function.

Regeneration occurs because PNS cell bodies are sensitive to damage to their nerve processes, and they react by sending out a signal that triggers the nerve fibers to regrow, explains Allan Basbaum, PhD, senior study author and chair of the UCSF Department of Anatomy. "Apparently this communication doesn’t take place within the CNS."

Scientists do not yet know the biochemical cause for the difference, he adds.

The traditional scientific approach in efforts to enhance CNS regeneration is to manipulate the biochemical environment of the cells at the site of the spinal cord injury, according to Basbaum. Instead of this type of investigation, Basbaum’s team used nervous system manipulation techniques to apply the principles of PNS cell growth capability to CNS cells.

The researchers took advantage of an unusual class of nerve fibers that has both a PNS and a CNS branch. Previously, the researchers had shown in animal studies that an injury made to the peripheral branch prior to a spinal cord injury provided the essential communication signal that enabled the CNS branch to grow. But this only worked if the PNS injury--which served as priming for CNS cell growth--was made at least a week before the CNS injury. "Clearly this would have no utility in clinical situations, where treatments cannot be made in anticipation of spinal cord injury," says Basbaum. Another challenge the researchers faced was stimulating CNS cells to grow beyond the injury site and into healthy tissue, which is essential to help regain function.

"A PNS injury at the time of spinal cord damage will only promote growth of nerve fibers into the spinal cord lesion, but not into the tissue beyond it. This is because growth capacity is enhanced, but it is not sustained," he explains. In the new study, researchers evaluated the effect of two peripheral nerve lesions (injuries) in animals with spinal cord injury. One lesion was made at the time of the cord injury and a second was made a week later. Both lesions were located in the animals’ sciatic nerve, which is part of the PNS.

The researchers found that the two "priming lesions" not only promoted significant spinal cord regeneration within the area of the spinal cord injury, but more important, the regenerating axons grew back into normal areas of the spinal cord, where the hope is that functional connections can be reestablished. Axons are the long, fragile, fibers that conduct impulses between nerve cells in the brain, spinal cord and limbs.

"Getting the growth beyond the lesion is key. If we can get those axons to grow even a few centimeters past the lesion, they can start sending signals and developing new circuits throughout the body," says Basbaum. Basbaum adds that timing is critical for successful nerve regeneration. "There is a window of opportunity just after the injury when the potential for growth through and beyond the lesion is greatest. If we wait too long after an injury, the cells revert back to their normal, no-growth state. Plus, scar tissue begins to form, making growth difficult." "These findings give us hope. The nervous system is capable of being modified to a level where we can achieve nerve fiber growth. Ultimately, the goal is to promote growth and sustain it long enough for recovery of movement to occur in spinal cord injury patients," he concludes. Study co-authors include first-author Simona Neumann, PhD, and Kate Skinner, MD, both of UCSF. The research was funded by the Roman Reed Spinal Cord Injury Research Fund of California and the National Institutes of Health.

Linda Gebroe | EurekAlert!

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>