Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hopkins study proves cochlear implants prevent or reverse damage to brain’s auditory nerve system

02.12.2005


Animal study advances call for early implants in children born deaf

New research at Johns Hopkins has clearly demonstrated the ability of cochlear implants in very young animals to forge normal nerve fibers that transmit sound and to restore hearing by reversing or preventing damage to the brain’s auditory system.

The findings in cats, published in Science online Dec. 2, help explain why implants are up to 80 percent successful in restoring hearing in young children born deaf, but rarely effective when implanted in congenitally deaf adults, the researchers say.



"What we think this study tells parents of deaf children is that if cochlear implants are being considered, the earlier they’re done the better," says David Ryugo, Ph.D., the lead investigator in the study. "There is an optimal time window for implants if they are to avoid permanent rewiring of hearing stations in the brain and the long-term effects on language learning that can result," adds Ryugo, a professor of otolaryngology and neuroscience at The Johns Hopkins University School of Medicine and its Hearing and Balance Center.

The Hopkins team, building on years of experience with cochlear implants in children and adults, now has more evidence to support their recommendation that the devices be installed by age 2, or earlier. More than 10,000 children are born deaf each year in the United States, and an estimated 1.5 million people are believed to be good candidates for cochlear implants.

Between ages 1 and 2, children’s skulls are almost fully grown, Ryugo notes, minimizing complications from brain surgery and greatly reducing the risk that the electrical wiring will loosen or pull away from their attachments under the scalp.

Cochlear implants are tiny devices designed to mimic the work of a snail-like structure in the inner ear containing fluid-filled canals and tissues. One of these is the organ of Corti, which detects pressure impulses and initiates electrical signals that travel along the inner ear’s auditory nerve to the brain, where the signals are translated into distinct sounds.

Unlike hearing aids, which simply amplify sound through an intact auditory nerve-to-brain system, cochlear implants are much more complicated. Composed of two parts, the devices simulate hearing by picking up sound through an external microphone located behind the ear and outside the scalp and then transmitting sound as electrical signals across the skin to an implanted receiver that is directly attached to the brain.

In the Science report, Ryugo, with graduate student Erika Kretzmer, B.S., and Hopkins professor of otolaryngology John Niparko, M.D., report comparisons of brain tissue containing auditory nerve fibers taken from cats that were born deaf. Three of the cats underwent implants within months of birth, and four did not get implants at all.

Both groups of cats were then exposed to three months of sound stimulation, in which the researchers played music and let the animals run around the lab, with its various and everyday background noises. Included with the deaf cats was a group of three similar cats with normal hearing for further comparison.

The miniaturized cochlear implants were very similar to those currently in use in children.

To gauge the animals’ hearing development, the deaf cats - both with and without implants - were subjected to a unique sound, one for each cat, that measured the cat’s response to cues, such as the sharp clapping of hands or ringing of a bell, to signify a food reward nearby. Within in a week, implanted kittens responded to their individual sound cues, rushing to collect their food reward, while those without implants did not.

Brain tissue analysis later showed that cats with implants developed regions, called synaptic connections, between connecting auditory nerve cells that closely resembled those of normal cats. The auditory nerve fibers contained plentiful supplies of synaptic vesicles, which store the transmitter chemicals necessary to pass sound signals between nerve cells; and the specialized nerve membranes that receive the signal were small and dome-shaped. In the deaf cats without implants, synaptic vesicles were absent, and the specialized nerve membranes were large and flat.

Niparko, who has for more than 20 years been studying the effects of hearing restoration in children, says the next research goal is to determine what happens between birth and puberty in the auditory system to diminish the chances of restoring hearing and language skills over time. Future experiments will evaluate brain changes that occur when an animal grows up in an environment that is devoid of sound, which the scientists believe will guide future therapies in restoring useful hearing to the deaf.

David March | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>