Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Major ovarian cancer clinical study announced at Yale using combination drug therapy

29.11.2005


A clinical study of ovarian cancer initiated by investigators at Yale School of Medicine will combine the anti-cancer drug phenoxodiol with docetaxel for women with recurrent ovarian cancer.



"Advanced-stage ovarian cancer is one of the most devastating forms of cancer, with half of the women diagnosed with it dying within five years," said principal investigator Thomas Rutherford, M.D., associate professor in the Department of Obstetrics, Gynecology & Reproductive Sciences at Yale and a member of the Yale Cancer Center. "One of the imperatives facing doctors who treat these patients is to find ways to restore sensitivity to drugs such as taxanes once they start to lose that sensitivity."

The Phase Ib/IIa clinical study is supported by Sanofi-Aventis and Marshall Edwards, Inc. It will combine phenoxodiol, which is in the investigational phase with docetaxel, a second-generation taxane--drug that inhibits cell growth by stopping cell division--commonly used in patients with recurrent or persistent ovarian cancer that has failed other therapies, including the first generation taxane paclitaxel. The clinical response rate to any chemotherapeutic is often limited due to rapid development of chemo-resistance in women with recurrent ovarian cancer.


The purpose of the study is to determine if the addition of phenoxodiol to docetaxel can improve clinical response and survival by delaying or preventing the development of chemo-resistance in women with recurrent ovarian cancer.

The study will enroll 60 women with recurrent epithelial ovarian, fallopian tube or abdominal cavity cancer after treatment with a platinum and paclitaxel. All 60 patients will be given docetaxel by injection weekly; half the patients will also be given oral phenoxodiol daily, and the other half a placebo tablet. Tumor response will be determined on the basis of tumor burden (RECIST criteria) in patients with measurable disease, and tumor marker levels (GCIG criteria) in patients with non-measurable disease. Disease free survival, the time from study enrollment to evidence of disease progression, will also be compared between the two groups. Treatment will continue for one year unless there is evidence of complete response, unacceptable toxicity or disease progression.

Rutherford said the rationale behind this study is based on two observations. The first is the demonstration in pre-clinical studies of the potent ability of phenoxodiol to

reverse chemo-resistance in human ovarian cancer cells to docetaxel, through the ablation of anti-apoptotic proteins in the tumor cells. The second is the encouragingly high tumor response rate observed in a current clinical study where phenoxodiol is being used to chemo-sensitize paclitaxel in advanced-stage ovarian cancer patients where the tumor is taxane-resistant or refractory.

"The highly encouraging pre-clinical and clinical data that we have seen with phenoxodiol when it has been used as a chemo-sensitizer to date, gives us optimism that this strategy will provide the means to improve the survival of these late-stage cancer patients," Rutherford said.

Karen N. Peart | EurekAlert!
Further information:
http://www.yale.edu
http://www.marshalledwardsinc.com

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>