Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Major ovarian cancer clinical study announced at Yale using combination drug therapy

29.11.2005


A clinical study of ovarian cancer initiated by investigators at Yale School of Medicine will combine the anti-cancer drug phenoxodiol with docetaxel for women with recurrent ovarian cancer.



"Advanced-stage ovarian cancer is one of the most devastating forms of cancer, with half of the women diagnosed with it dying within five years," said principal investigator Thomas Rutherford, M.D., associate professor in the Department of Obstetrics, Gynecology & Reproductive Sciences at Yale and a member of the Yale Cancer Center. "One of the imperatives facing doctors who treat these patients is to find ways to restore sensitivity to drugs such as taxanes once they start to lose that sensitivity."

The Phase Ib/IIa clinical study is supported by Sanofi-Aventis and Marshall Edwards, Inc. It will combine phenoxodiol, which is in the investigational phase with docetaxel, a second-generation taxane--drug that inhibits cell growth by stopping cell division--commonly used in patients with recurrent or persistent ovarian cancer that has failed other therapies, including the first generation taxane paclitaxel. The clinical response rate to any chemotherapeutic is often limited due to rapid development of chemo-resistance in women with recurrent ovarian cancer.


The purpose of the study is to determine if the addition of phenoxodiol to docetaxel can improve clinical response and survival by delaying or preventing the development of chemo-resistance in women with recurrent ovarian cancer.

The study will enroll 60 women with recurrent epithelial ovarian, fallopian tube or abdominal cavity cancer after treatment with a platinum and paclitaxel. All 60 patients will be given docetaxel by injection weekly; half the patients will also be given oral phenoxodiol daily, and the other half a placebo tablet. Tumor response will be determined on the basis of tumor burden (RECIST criteria) in patients with measurable disease, and tumor marker levels (GCIG criteria) in patients with non-measurable disease. Disease free survival, the time from study enrollment to evidence of disease progression, will also be compared between the two groups. Treatment will continue for one year unless there is evidence of complete response, unacceptable toxicity or disease progression.

Rutherford said the rationale behind this study is based on two observations. The first is the demonstration in pre-clinical studies of the potent ability of phenoxodiol to

reverse chemo-resistance in human ovarian cancer cells to docetaxel, through the ablation of anti-apoptotic proteins in the tumor cells. The second is the encouragingly high tumor response rate observed in a current clinical study where phenoxodiol is being used to chemo-sensitize paclitaxel in advanced-stage ovarian cancer patients where the tumor is taxane-resistant or refractory.

"The highly encouraging pre-clinical and clinical data that we have seen with phenoxodiol when it has been used as a chemo-sensitizer to date, gives us optimism that this strategy will provide the means to improve the survival of these late-stage cancer patients," Rutherford said.

Karen N. Peart | EurekAlert!
Further information:
http://www.yale.edu
http://www.marshalledwardsinc.com

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>