Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Study Published in PNAS Confirms Potential Utility of Marillion´s Nanoparticle Technology for Tumor Targeting Agents

28.11.2005


Findings in the Prestigious "Proceedings of the National Academy of Sciences" Describe How Natural Nanoparticles Can Be Adapted to Fight Cancer



Marillion Pharmaceuticals, an emerging biotechnology company developing cancer therapeutics, announced that the science underlying its core technology was published in the "Proceedings of the National Academy of Sciences" (PNAS), a peer-reviewed journal. Marillion´s nanoplatform conjugates tumor-homing molecules to naturally occurring nanoparticles responsible for lipid transport throughout the body. The adapted nanoparticles are able to deliver anti-cancer drugs directly into tumor cells. The technology was developed by scientists from the University of Pennsylvania who helped found the company and who are co-authors of the scientific study published in the PNAS.

Marillion´s nanoparticles, called conjugated lipoproteins, are less than 25 nm in diameter, more than 10,000 times smaller than the width of a human hair. Because of their small size they can pass through blood vessel walls to ferry their cargo of anti-cancer drugs to targeted receptors and directly into the cancer cells, leaving the surrounding healthy tissue unaffected.


"We have shown that we can empty these naturally occurring nanoparticles, fill them with chemotherapeutic and imaging agents and then re-route them away from their natural receptors directly to tumor cells," says Gang Zheng, Ph.D., University of Pennsylvania researcher and Marillion co-founder.

There is a great deal of research activity underway attempting to apply nanoparticle technology to cancer therapy. However, many of the nanoparticles currently being developed are synthetic and may themselves prove toxic to the body, precisely because of their ultra-small size and complex interactions with tissues. Marillion intends to avoid these problems by adapting naturally occurring nanoparticles, which are less susceptible to these toxic effects.

Jerry Glickson, Ph.D. also at the University of Pennsylvania and a co-founder of Marillion, added, "As described in the journal, the targeting entity in this study was folic acid, which binds to specific receptors found on certain types of cancers and directs the nanoparticle to the tumor. Other targeting entities can also be attached to guide the nanoparticles to alternate tumors or to the tumor vasculature, where agents can be delivered that fight the cancer by literally starving the tumor of it´s essential blood supply. The particles´ trajectory through the body can also be tracked by attaching imaging agents to the nanoparticle, providing the potential for an innovative ´see and treat´ approach to cancer therapy."

Marillion´s natural nanoparticles have a number of potential advantages. They are completely biodegradable, have a long half-life in the circulation, can be used with numerous types of targeting agents, are capable of delivering a variety of different types of drugs, and are multifunctional, allowing them to be "loaded" with imaging and therapeutic agents both inside and on the surface of the nanoparticle. Marillion is currently using its nanoparticles to carry the widely used chemotherapeutic drug paclitaxel into ovarian tumors, and it plans to initiate clinical trials with its first nanoplatform-based drugs within the next two years.

"Our natural nanoparticles can be designed to act as miniature drug-laden missiles that are small enough to target tumor cells, yet are expected to be devoid of immunogenic and other adverse effects on the body," said Zahed Subhan, Ph.D., J.D., CEO of Marillion. "The results reported in PNAS bode well for the development of our practical nanoparticle-based approach to improving treatment and outcomes for many cancer patients."

The article titled "Rerouting lipoprotein nanoparticles to selected alternate receptors for the targeted delivery of cancer diagnostic and therapeutic agents" initially appeared in the PNAS on-line edition on November 23, 2005. Co-authors Dr. Gang Zheng, assistant professor in the department of radiology and Dr. Jerry Glickson, director of molecular imaging and professor of radiology, biochemistry & biophysics, are both at the University of Pennsylvania.

About Marillion

Marillion Pharmaceuticals is a dynamic pharmaceutical company dedicated to the discovery, development and commercialization of anticancer drugs based on proprietary tumor targeting technologies licensed exclusively from the University of Pennsylvania. The company is building a pipeline of drugs that are designed to selectively target tumor cells so that they are significantly more effective in killing diseased cells and less toxic to healthy tissues than conventional therapies.

Contact:
Ellen Semple
BioAdvance
+1 215.966.6207

Contact:
Barbara Lindheim
GendeLLindheim BioCom Partners
+1 212.918.4650

| directnews
Further information:
http://www.marillionpharma.com

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>