Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Study Published in PNAS Confirms Potential Utility of Marillion´s Nanoparticle Technology for Tumor Targeting Agents

28.11.2005


Findings in the Prestigious "Proceedings of the National Academy of Sciences" Describe How Natural Nanoparticles Can Be Adapted to Fight Cancer



Marillion Pharmaceuticals, an emerging biotechnology company developing cancer therapeutics, announced that the science underlying its core technology was published in the "Proceedings of the National Academy of Sciences" (PNAS), a peer-reviewed journal. Marillion´s nanoplatform conjugates tumor-homing molecules to naturally occurring nanoparticles responsible for lipid transport throughout the body. The adapted nanoparticles are able to deliver anti-cancer drugs directly into tumor cells. The technology was developed by scientists from the University of Pennsylvania who helped found the company and who are co-authors of the scientific study published in the PNAS.

Marillion´s nanoparticles, called conjugated lipoproteins, are less than 25 nm in diameter, more than 10,000 times smaller than the width of a human hair. Because of their small size they can pass through blood vessel walls to ferry their cargo of anti-cancer drugs to targeted receptors and directly into the cancer cells, leaving the surrounding healthy tissue unaffected.


"We have shown that we can empty these naturally occurring nanoparticles, fill them with chemotherapeutic and imaging agents and then re-route them away from their natural receptors directly to tumor cells," says Gang Zheng, Ph.D., University of Pennsylvania researcher and Marillion co-founder.

There is a great deal of research activity underway attempting to apply nanoparticle technology to cancer therapy. However, many of the nanoparticles currently being developed are synthetic and may themselves prove toxic to the body, precisely because of their ultra-small size and complex interactions with tissues. Marillion intends to avoid these problems by adapting naturally occurring nanoparticles, which are less susceptible to these toxic effects.

Jerry Glickson, Ph.D. also at the University of Pennsylvania and a co-founder of Marillion, added, "As described in the journal, the targeting entity in this study was folic acid, which binds to specific receptors found on certain types of cancers and directs the nanoparticle to the tumor. Other targeting entities can also be attached to guide the nanoparticles to alternate tumors or to the tumor vasculature, where agents can be delivered that fight the cancer by literally starving the tumor of it´s essential blood supply. The particles´ trajectory through the body can also be tracked by attaching imaging agents to the nanoparticle, providing the potential for an innovative ´see and treat´ approach to cancer therapy."

Marillion´s natural nanoparticles have a number of potential advantages. They are completely biodegradable, have a long half-life in the circulation, can be used with numerous types of targeting agents, are capable of delivering a variety of different types of drugs, and are multifunctional, allowing them to be "loaded" with imaging and therapeutic agents both inside and on the surface of the nanoparticle. Marillion is currently using its nanoparticles to carry the widely used chemotherapeutic drug paclitaxel into ovarian tumors, and it plans to initiate clinical trials with its first nanoplatform-based drugs within the next two years.

"Our natural nanoparticles can be designed to act as miniature drug-laden missiles that are small enough to target tumor cells, yet are expected to be devoid of immunogenic and other adverse effects on the body," said Zahed Subhan, Ph.D., J.D., CEO of Marillion. "The results reported in PNAS bode well for the development of our practical nanoparticle-based approach to improving treatment and outcomes for many cancer patients."

The article titled "Rerouting lipoprotein nanoparticles to selected alternate receptors for the targeted delivery of cancer diagnostic and therapeutic agents" initially appeared in the PNAS on-line edition on November 23, 2005. Co-authors Dr. Gang Zheng, assistant professor in the department of radiology and Dr. Jerry Glickson, director of molecular imaging and professor of radiology, biochemistry & biophysics, are both at the University of Pennsylvania.

About Marillion

Marillion Pharmaceuticals is a dynamic pharmaceutical company dedicated to the discovery, development and commercialization of anticancer drugs based on proprietary tumor targeting technologies licensed exclusively from the University of Pennsylvania. The company is building a pipeline of drugs that are designed to selectively target tumor cells so that they are significantly more effective in killing diseased cells and less toxic to healthy tissues than conventional therapies.

Contact:
Ellen Semple
BioAdvance
+1 215.966.6207

Contact:
Barbara Lindheim
GendeLLindheim BioCom Partners
+1 212.918.4650

| directnews
Further information:
http://www.marillionpharma.com

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>