Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Study Published in PNAS Confirms Potential Utility of Marillion´s Nanoparticle Technology for Tumor Targeting Agents

28.11.2005


Findings in the Prestigious "Proceedings of the National Academy of Sciences" Describe How Natural Nanoparticles Can Be Adapted to Fight Cancer



Marillion Pharmaceuticals, an emerging biotechnology company developing cancer therapeutics, announced that the science underlying its core technology was published in the "Proceedings of the National Academy of Sciences" (PNAS), a peer-reviewed journal. Marillion´s nanoplatform conjugates tumor-homing molecules to naturally occurring nanoparticles responsible for lipid transport throughout the body. The adapted nanoparticles are able to deliver anti-cancer drugs directly into tumor cells. The technology was developed by scientists from the University of Pennsylvania who helped found the company and who are co-authors of the scientific study published in the PNAS.

Marillion´s nanoparticles, called conjugated lipoproteins, are less than 25 nm in diameter, more than 10,000 times smaller than the width of a human hair. Because of their small size they can pass through blood vessel walls to ferry their cargo of anti-cancer drugs to targeted receptors and directly into the cancer cells, leaving the surrounding healthy tissue unaffected.


"We have shown that we can empty these naturally occurring nanoparticles, fill them with chemotherapeutic and imaging agents and then re-route them away from their natural receptors directly to tumor cells," says Gang Zheng, Ph.D., University of Pennsylvania researcher and Marillion co-founder.

There is a great deal of research activity underway attempting to apply nanoparticle technology to cancer therapy. However, many of the nanoparticles currently being developed are synthetic and may themselves prove toxic to the body, precisely because of their ultra-small size and complex interactions with tissues. Marillion intends to avoid these problems by adapting naturally occurring nanoparticles, which are less susceptible to these toxic effects.

Jerry Glickson, Ph.D. also at the University of Pennsylvania and a co-founder of Marillion, added, "As described in the journal, the targeting entity in this study was folic acid, which binds to specific receptors found on certain types of cancers and directs the nanoparticle to the tumor. Other targeting entities can also be attached to guide the nanoparticles to alternate tumors or to the tumor vasculature, where agents can be delivered that fight the cancer by literally starving the tumor of it´s essential blood supply. The particles´ trajectory through the body can also be tracked by attaching imaging agents to the nanoparticle, providing the potential for an innovative ´see and treat´ approach to cancer therapy."

Marillion´s natural nanoparticles have a number of potential advantages. They are completely biodegradable, have a long half-life in the circulation, can be used with numerous types of targeting agents, are capable of delivering a variety of different types of drugs, and are multifunctional, allowing them to be "loaded" with imaging and therapeutic agents both inside and on the surface of the nanoparticle. Marillion is currently using its nanoparticles to carry the widely used chemotherapeutic drug paclitaxel into ovarian tumors, and it plans to initiate clinical trials with its first nanoplatform-based drugs within the next two years.

"Our natural nanoparticles can be designed to act as miniature drug-laden missiles that are small enough to target tumor cells, yet are expected to be devoid of immunogenic and other adverse effects on the body," said Zahed Subhan, Ph.D., J.D., CEO of Marillion. "The results reported in PNAS bode well for the development of our practical nanoparticle-based approach to improving treatment and outcomes for many cancer patients."

The article titled "Rerouting lipoprotein nanoparticles to selected alternate receptors for the targeted delivery of cancer diagnostic and therapeutic agents" initially appeared in the PNAS on-line edition on November 23, 2005. Co-authors Dr. Gang Zheng, assistant professor in the department of radiology and Dr. Jerry Glickson, director of molecular imaging and professor of radiology, biochemistry & biophysics, are both at the University of Pennsylvania.

About Marillion

Marillion Pharmaceuticals is a dynamic pharmaceutical company dedicated to the discovery, development and commercialization of anticancer drugs based on proprietary tumor targeting technologies licensed exclusively from the University of Pennsylvania. The company is building a pipeline of drugs that are designed to selectively target tumor cells so that they are significantly more effective in killing diseased cells and less toxic to healthy tissues than conventional therapies.

Contact:
Ellen Semple
BioAdvance
+1 215.966.6207

Contact:
Barbara Lindheim
GendeLLindheim BioCom Partners
+1 212.918.4650

| directnews
Further information:
http://www.marillionpharma.com

More articles from Studies and Analyses:

nachricht Disarray in the brain
18.12.2017 | Universität zu Lübeck

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

The body's street sweepers

18.12.2017 | Life Sciences

Fast flowing heat in layered material heterostructures

18.12.2017 | Materials Sciences

Life on the edge prepares plants for climate change

18.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>