Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery disproves simple concept of memory as ’storage space’

24.11.2005


Scientists achieve first measurements of selectivity mechanism


a. Example of the memory filtering test conducted by University of Oregon researchers. Participants must remember only the red rectangles and ignore the blue rectangles.
b. Brainwaves for high capacity and low capacity participants. Blue line is activity for 4 red items; Black line is for 2 red items; Red line is for 2 red items and 2 blue items. If the red line is close to the black line, subjects are efficient at keeping out the blue items. If the red line is close to the blue line, the subjects are unable to keep the blue items from popping into memory.
c. Correlation between a person’s memory capacity and how good they are at keeping the irrelevant items out of memory.



Even if you could get more RAM for your brain, the extra storage probably wouldn’t make it easier for you to find where you left your car keys.

What may help, according to a discovery published Nov. 24 in the journal Nature, is a better bouncer – as in the type of bouncer who manages crowd control for nightclubs. The study by Edward Vogel, an assistant professor of cognitive neuroscience at the University of Oregon, is the first to demonstrate that awareness, or "visual working memory," depends on your ability to filter out irrelevant information.


"Until now, it’s been assumed that people with high capacity visual working memory had greater storage but actually, it’s about the bouncer – a neural mechanism that controls what information gets into awareness," Vogel said.

The findings turn upside down the popular concept that a person’s memory capacity, which is strongly related to intelligence, is solely dependent upon the amount of information you can cram into your head at one time. These results have broad implications and may lead to developing more effective ways to optimize memory as well as improved diagnosis and treatment of cognitive deficits associated with attention deficit disorder and schizophrenia.

The study used a new technique for measuring brainwaves, developed by Vogel and previously reported in Nature (April 2004), which allows researchers to record the effects as objects pop into the minds of their subjects on a moment-by-moment basis.

Working with two of his graduate students, Andrew McCollough and Maro Machizawa, Vogel recorded brain activity as people performed computer tasks asking them to remember arrays of colored squares or rectangles. In one experiment, researchers told subjects to hold in mind two red rectangles and ignore two blue ones. Without exception, high-capacity individuals excelled at dismissing blue, but low-capacity individuals held all of the rectangles in mind.

"People differed systematically, and dramatically, in their ability to keep irrelevant items out of awareness," Vogel said. "This doesn’t mean people with low capacity are cognitively impaired. There may be advantages to having a lot of seemingly irrelevant information coming to mind. Being a bit scattered tends to be a trait of highly imaginative people."

This work was supported by grants from the National Institutes of Mental Health and the Oregon Medical Research Foundation.

At the University of Oregon since 2001, Vogel leads the Visual Working Memory and Attention Lab in the Department of Psychology.

Machizawa assisted with Vogel’s research while completing his master’s degree. He is now a researcher at the Riken Brain Sciences Institute, Japan’s leading funding agency for scientific research.

McCollough, who is working toward his doctorate, is a graduate research assistant in Vogel’s lab.

Melody Ward Leslie | EurekAlert!
Further information:
http://www.uoregon.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>