Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery disproves simple concept of memory as ’storage space’

24.11.2005


Scientists achieve first measurements of selectivity mechanism


a. Example of the memory filtering test conducted by University of Oregon researchers. Participants must remember only the red rectangles and ignore the blue rectangles.
b. Brainwaves for high capacity and low capacity participants. Blue line is activity for 4 red items; Black line is for 2 red items; Red line is for 2 red items and 2 blue items. If the red line is close to the black line, subjects are efficient at keeping out the blue items. If the red line is close to the blue line, the subjects are unable to keep the blue items from popping into memory.
c. Correlation between a person’s memory capacity and how good they are at keeping the irrelevant items out of memory.



Even if you could get more RAM for your brain, the extra storage probably wouldn’t make it easier for you to find where you left your car keys.

What may help, according to a discovery published Nov. 24 in the journal Nature, is a better bouncer – as in the type of bouncer who manages crowd control for nightclubs. The study by Edward Vogel, an assistant professor of cognitive neuroscience at the University of Oregon, is the first to demonstrate that awareness, or "visual working memory," depends on your ability to filter out irrelevant information.


"Until now, it’s been assumed that people with high capacity visual working memory had greater storage but actually, it’s about the bouncer – a neural mechanism that controls what information gets into awareness," Vogel said.

The findings turn upside down the popular concept that a person’s memory capacity, which is strongly related to intelligence, is solely dependent upon the amount of information you can cram into your head at one time. These results have broad implications and may lead to developing more effective ways to optimize memory as well as improved diagnosis and treatment of cognitive deficits associated with attention deficit disorder and schizophrenia.

The study used a new technique for measuring brainwaves, developed by Vogel and previously reported in Nature (April 2004), which allows researchers to record the effects as objects pop into the minds of their subjects on a moment-by-moment basis.

Working with two of his graduate students, Andrew McCollough and Maro Machizawa, Vogel recorded brain activity as people performed computer tasks asking them to remember arrays of colored squares or rectangles. In one experiment, researchers told subjects to hold in mind two red rectangles and ignore two blue ones. Without exception, high-capacity individuals excelled at dismissing blue, but low-capacity individuals held all of the rectangles in mind.

"People differed systematically, and dramatically, in their ability to keep irrelevant items out of awareness," Vogel said. "This doesn’t mean people with low capacity are cognitively impaired. There may be advantages to having a lot of seemingly irrelevant information coming to mind. Being a bit scattered tends to be a trait of highly imaginative people."

This work was supported by grants from the National Institutes of Mental Health and the Oregon Medical Research Foundation.

At the University of Oregon since 2001, Vogel leads the Visual Working Memory and Attention Lab in the Department of Psychology.

Machizawa assisted with Vogel’s research while completing his master’s degree. He is now a researcher at the Riken Brain Sciences Institute, Japan’s leading funding agency for scientific research.

McCollough, who is working toward his doctorate, is a graduate research assistant in Vogel’s lab.

Melody Ward Leslie | EurekAlert!
Further information:
http://www.uoregon.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>