Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery disproves simple concept of memory as ’storage space’

24.11.2005


Scientists achieve first measurements of selectivity mechanism


a. Example of the memory filtering test conducted by University of Oregon researchers. Participants must remember only the red rectangles and ignore the blue rectangles.
b. Brainwaves for high capacity and low capacity participants. Blue line is activity for 4 red items; Black line is for 2 red items; Red line is for 2 red items and 2 blue items. If the red line is close to the black line, subjects are efficient at keeping out the blue items. If the red line is close to the blue line, the subjects are unable to keep the blue items from popping into memory.
c. Correlation between a person’s memory capacity and how good they are at keeping the irrelevant items out of memory.



Even if you could get more RAM for your brain, the extra storage probably wouldn’t make it easier for you to find where you left your car keys.

What may help, according to a discovery published Nov. 24 in the journal Nature, is a better bouncer – as in the type of bouncer who manages crowd control for nightclubs. The study by Edward Vogel, an assistant professor of cognitive neuroscience at the University of Oregon, is the first to demonstrate that awareness, or "visual working memory," depends on your ability to filter out irrelevant information.


"Until now, it’s been assumed that people with high capacity visual working memory had greater storage but actually, it’s about the bouncer – a neural mechanism that controls what information gets into awareness," Vogel said.

The findings turn upside down the popular concept that a person’s memory capacity, which is strongly related to intelligence, is solely dependent upon the amount of information you can cram into your head at one time. These results have broad implications and may lead to developing more effective ways to optimize memory as well as improved diagnosis and treatment of cognitive deficits associated with attention deficit disorder and schizophrenia.

The study used a new technique for measuring brainwaves, developed by Vogel and previously reported in Nature (April 2004), which allows researchers to record the effects as objects pop into the minds of their subjects on a moment-by-moment basis.

Working with two of his graduate students, Andrew McCollough and Maro Machizawa, Vogel recorded brain activity as people performed computer tasks asking them to remember arrays of colored squares or rectangles. In one experiment, researchers told subjects to hold in mind two red rectangles and ignore two blue ones. Without exception, high-capacity individuals excelled at dismissing blue, but low-capacity individuals held all of the rectangles in mind.

"People differed systematically, and dramatically, in their ability to keep irrelevant items out of awareness," Vogel said. "This doesn’t mean people with low capacity are cognitively impaired. There may be advantages to having a lot of seemingly irrelevant information coming to mind. Being a bit scattered tends to be a trait of highly imaginative people."

This work was supported by grants from the National Institutes of Mental Health and the Oregon Medical Research Foundation.

At the University of Oregon since 2001, Vogel leads the Visual Working Memory and Attention Lab in the Department of Psychology.

Machizawa assisted with Vogel’s research while completing his master’s degree. He is now a researcher at the Riken Brain Sciences Institute, Japan’s leading funding agency for scientific research.

McCollough, who is working toward his doctorate, is a graduate research assistant in Vogel’s lab.

Melody Ward Leslie | EurekAlert!
Further information:
http://www.uoregon.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>