Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers reveals how certain chemicals protect the brain against cell damage


Study could lead to better treatments for Alzheimer’s disease

A study by Johns Hopkins scientists has revealed that stimulating brain cell receptors for certain hormone-like chemicals in brain cells called prostaglandins can protect the cells from amyloid â-peptide 42 (Aâ1-42), a compound that has been linked to brain cell death and Alzheimer’s disease (AD).

Prostaglandin E2 (PGE2) is produced via the action of the COX-2 enzyme, which can contribute to brain injury. In spite of the negative effects of COX-2, ongoing studies have shown that PGE2 can actually provide some protection against brain cell death by binding to various PGE2 receptors.

Prostaglandins are a class of compounds that act like hormones by binding to specific receptors. Their many functions include constricting and relaxing blood vessels, controlling clotting, causing pain, and both increasing and decreasing inflammation.

Because neuroinflammation is thought to play a role in the development of AD, PGE2 was a logical place to look for clues to AD toxicity and brain cell death, according to co-lead researcher Sylvain Doré, Ph.D., an associate professor of anesthesiology and critical care medicine and neuroscience at The Johns Hopkins University School of Medicine.

Although it was already known that PGE2 can offer some protection against neurotoxicity, Doré’s study shows that this protection is linked to stimulation of receptors EP2 and EP4. This stimulation results in a cascade of events inside brain cells that produces cyclic-AMP (cAMP), a molecule that protects brain cells by reducing the toxic effects of Aâ1-42.

Doré speculates that the presence of Aâ1-42 in neuritic plaque, a waxy translucent substance consisting of protein and other materials, a hallmark in the brains of AD patients, may cause cellular death by self-assembling into long protein filaments that are toxic to neurons.

It’s also possible, Doré said, that prostaglandin protection works by modifying the link between Aâ1-42 and the overproduction of free radicals. Free radicals are highly reactive chemicals that oxidize other molecules and at high concentrations lead to cell death. Free radicals are associated with neuronal loss observed in AD.

"The development and testing of molecules that can enhance PGE2 receptor activity, and further research into how these receptors increase cAMP concentrations and improve protection could lead to successful new treatments," Doré said.

In the study, published in the European Journal of Neuroscience, Doré and researchers focused on four specific PGE2 receptors, EP1-4, in cortical neuronal cells cultured from postnatal mice.

To establish Aâ1-42-induced neurotoxicity, Doré and his team incubated these neurons with freshly dissolved Aâ1-42 protein for 48 hours. The analysis of the cells showed that Aâ1-42 resulted in a net increase in neuronal cell death compared to control cells that did not receive the peptide.

To investigate the effect of PGE2 on Aâ1-42 toxicity, neurons were co-treated with Aâ1-42 and different concentrations of PGE2. Results showed that PGE2 significantly increased cell survival compared to cultures that received only Aâ1-42.

To determine which of the four PGE2 receptors was responsible in the protection against Aâ1-42 toxicity, Doré’s group conducted three separate experiments. In the first they co-treated neurons with Aâ1-42 and the EP2 agonist butaprost. An agonist is a drug that mimics the action of a natural substance and binds to that substance’s receptor. Results showed that the stimulation of EP2 receptors offered significant protection against Aâ1-42 neurotoxicity.

They also co-treated neurons with Aâ1-42 and the EP4⁄EP3 agonist, OHPGE1, and received similar results.

Conversely, co-treatment of the cells with the EP3⁄EP1 agonist, sulprostone, and Aâ1-42 exhibited no significant protection.

Doré’s group concluded that the protective effects against Aâ1-42 neurotoxicity are specific to PGE2 receptors EP2 and EP4.

The researchers next pursued changes in cAMP levels as a potential underlying cellular mechanism in the protective actions of EP2 and EP4 agonists. They treated neurons with PGE2, butaprost or OHPGE1 for 15 minutes and measured the cAMP concentration inside the cells. Results showed that brief exposure of neurons to PGE2 almost tripled cAMP levels, and exposure to butaprost or OHPGE1 almost doubled them.

Subsequently, to address whether PGE2-mediated neuroprotection involves cAMP, Dore and his group measured neuron toxicity of Aâ1-42 in the absence or presence of cAMP. Treatment with cAMP significantly enhanced cell health after Aâ1-42 exposure indicating that stimulation of PGE2 receptors EP2 and EP4 generates a cascade of events that increases cAMP concentrations and, in turn, reduces Aâ1-42 neurotoxicity.

"Due to the established link between Aâ1-42 and Alzheimer’s disease, this discovery could lead to better drug therapies for treating this disease," Doré said.

Eric Vohr | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>