Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene at heart of bad outcomes in high blood pressure patients

18.11.2005


Finding advances efforts to tailor drugs to individual patients



Having high blood pressure and a particular genetic alteration dramatically increases the risk of heart attack, stroke or death, and may explain why some hypertensive patients fare worse than others - even if they take the same medication, University of Florida researchers announced this week.

The discovery, reported at the annual Scientific Sessions of the American Heart Association, brings scientists a step closer toward determining how certain genes influence the development of hypertension and the bad outcomes associated with the condition. Just as discriminating shoppers buy made-to-order suits to flatter their figure, this type of research may someday enable patients to seek out medicine tailored to fit, based not on their size and shape but on their genetic makeup.


UF researchers studied about 5,700 patients ages 50 and older who were participating in a National Institutes of Health-funded substudy of the International Verapamil SR-Trandolapril study, or INVEST-GENES. Other scientists had previously found that hypertensive patients with a certain version of the alpha-adducin gene were less likely to suffer a heart attack or stroke if they were taking a diuretic.

"Specifically, their data suggested that one genotype group benefited from the diuretic and had a reduction in heart attack and stroke, while the other genotype group did not," said Julie Johnson, Pharm.D., director of the UF Center for Pharmacogenomics and chairwoman of the department of pharmacy practice at UF’s College of Pharmacy. "We felt we had an ideal population for trying to replicate this finding, which if true could have important clinical implications.

"In our study, carriers of the genetic variation had an approximately 43 percent higher risk of death, heart attack or stroke," she said. "Thus, this helps us piece together the puzzle of the various genes that lead to some people having worse outcomes than others when they have hypertension."

Genes likely determine nearly half one’s risk of developing hypertension, and factors such as diet, age, health status and the environment determine the rest. Similarly, certain genes are associated with the risk of the adverse consequences of hypertension, such as heart attack, stroke and kidney failure, said Johnson, a member of the UF Genetics Institute.

"One of the goals of our research is to identify the genes that are related to patient-to-patient differences in response to medications," Johnson said. "Personalizing drugs based on genetic makeup instead of taking a trial-and-error approach could lead to safer, more effective treatments for individual patients."

About 65 million Americans have high blood pressure, and another 25 million are at high risk of developing hypertension in the next decade, Johnson said. Elevated blood pressure is associated with kidney disease and up to half of all cases of coronary artery disease, the No. 1 killer of men and women in the United States. Many patients fail to achieve targeted blood pressure goals.

In the INVEST substudy, nearly a third of the participants were carriers of the tryptophan version of the alpha-adducin gene, a protein associated with the movement of ions, especially sodium, across cells. In these individuals, the amino acid glycine has been swapped with the amino acid tryptophan. Up to 40 percent of the population carries at least one copy of the tryptophan form of the gene.

In the UF study, those with this version had a 43 percent higher risk of heart attack, stroke or death than those with the glycine form in the 2 ½ years after the study began; 258 patients, about 5 percent, experienced a heart attack or stroke, or died. But unlike previous research, the UF study did not show that patients with the glycine form benefited more from diuretics, which help lower blood pressure by ridding the body of excess salt and water.

"We were not able to show any relationship between the genetic variations and benefits associated with diuretic therapy," Johnson said. "Thus, our data suggest that we would not use this genetic information to help determine who should get a diuretic. However, it does provide us clues into at least one gene that likely places people at risk for death, heart attack and stroke, and so perhaps in the future this information can be used to be more aggressive in the preventive therapies for these individuals."

As researchers learn more, they hope to better understand the complex interplay between genes, disease development and the treatments that work best depending on one’s DNA. For now, identifying patients at risk remains a challenge, and treatment is often inadequate, Johnson said.

"There are five first-line drug classes, with probably an average of seven to eight drugs in each class, then an additional half-dozen or so other drug classes that aren’t considered first-line," Johnson said. "This means there are many choices for drug therapy in hypertension - a good thing - but also adds to the trial-and-error element of finding the right drug for the right person, as any specific drug has only about a 50 percent chance of being effective in a specific patient."

Identifying genetic risk factors is only the first step, said epidemiologist Sharon Kardia, Ph.D., director of the Public Health Genetics Program at the University of Michigan School of Public Health.

"Large research studies need to be undertaken to prove that genetic risk can be reduced through medical or public health interventions. Second, this whole new realm of genomic medicine greatly expands the responsibilities of doctors, nurses and pharmacist to assure the proper use of genetic information in prescribing, dispensing and administering drug therapies," Kardia said. "Lastly, we have to tread lightly until we have assurances that people’s genetic information will be properly protected so that identifying someone as more expensive or difficult to treat won’t result in insurance or perhaps job discrimination. As Dr. Johnson’s research illustrates, we now have good evidence that we should be investing in genetics education, regulation and social engagement so that we can move these results to the next level - namely, decreasing health-care costs and saving lives."

Melanie Ross | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>