Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global signaling study suggests cancer link to protein promiscuity

17.11.2005


Haphazard activation of secondary signaling pathways may fuel cancer’s genesis



When found at abnormally high concentrations, two proteins implicated in many human cancers have the potential to spur indiscriminate biochemical signaling inside cells, chemists at Harvard University have found. Their finding may expand scientists’ current understanding of oncogenesis -- that cancer arises when an oncoprotein becomes overactive, ramping up the biochemical pathways that it normally activates -- suggesting that an important additional mechanism could be the inappropriate activation of numerous secondary pathways.

"Our data offer a new way to think about cancer, adding to the current paradigm," says Gavin MacBeath, an assistant professor of chemistry and chemical biology in Harvard’s Faculty of Arts and Sciences and co-author of a paper published in the journal Nature. "We present the hypothesis that an important component of oncogenesis is the ability of proteins to turn on alternative, secondary signaling pathways when overexpressed, rather than simply upregulating primary pathways."


MacBeath and colleagues studied the four human ErbB receptors, which set in motion widely studied cellular processes including cell migration, adhesion, growth and death. These receptors span the cell membrane; the external portion binds free growth factors, creating biochemical signals propagated inside the cell.

Each ErbB receptor has multiple intracellular binding sites where proteins can dock, but MacBeath’s group found that only two of the four ErbB proteins, known as EGFR and ErbB2, become dramatically more "promiscuous" -- able to recruit and activate a large number of different signaling proteins -- when present at high concentrations.

"These two promiscuous ErbB proteins are known to be overactive in many human cancers, suggesting that their ability to turn on rampant signaling may contribute to their high oncogenic potential," MacBeath says. "This newfound link may also offer alternative strategies for therapeutic intervention. Many of today’s cancer pharmaceuticals work by targeting individual receptors such as EGFR and ErbB2. Our work suggests that new drugs could target critical secondary pathways that are inappropriately activated by promiscuous proteins."

The researchers studied interactions between signaling proteins and the ErbB receptors using a protein microarray technique developed by MacBeath in 2000, when he was a research fellow in Harvard’s Bauer Center for Genomic Research. This method can rapidly and simultaneously assess the strength of interactions among tens of thousands of proteins genome-wide. The current research analyzed the interactions between 159 proteins and 33 binding sites on the four ErbB receptors. The scientists looked not only at whether a given protein-receptor pair interacted, but also how strongly.

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>