Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Brain activity related to processing faces is similar in people with, without autism


New findings may help with social interaction

New brain imaging research at the University of North Carolina at Chapel Hill indicates that when people with autism look at a face, activity in the brain area that responds is similar to that of people without autism.

The finding is surprising, as it is widely known that autistic individuals tend to avoid looking directly at faces. The research also counters previous published reports that the face-processing area at the back of the brain is under-responsive in people with autism, and it suggests that specific behavioral interventions may help people with autism improve their ability to interact socially.

The new research will be presented Wednesday (Nov. 16) in Washington, D.C., at the Society for Neuroscience 35th Annual Meeting. The study was conducted by Dr. Aysenil Belger, associate professor of psychiatry in UNC’s School of Medicine and of psychology in UNC’s College of Arts and Sciences; and Dr. Gabriel Dichter, postdoctoral research fellow within UNC’s Neurodevelopmental Disorders Research Center.

The study involved functional magnetic resonance imaging, or fMRI. Unlike standard MRI scans that show anatomical structures in black and white, fMRI offers digitally enhanced color images of brain function, depicting localized changes in blood flow and oxygenation.

When particular regions of the brain increase their neural activity in association with various actions or thought processes, they emit enhanced blood oxygen level dependent signals. The signals can be localized in the brain and translated into digital images that portray neural activity level as a ratio of oxygenated to de-oxygenated hemoglobin, the iron-containing pigment in red blood cells. Researchers then can quantify these signals to generate maps of various brain functions.

"The brain regions ’specialized’ for face processing, the fusiform gyrus, activated almost identically in our autistic study participants and the control group of individuals without autism. This is one very simple and clear-cut finding," Belger said.

Previous brain imaging findings of under-responsiveness in the facial area have led some experts to consider this a key cause of the social impairments observed in autism. But Belger and Dichter said they thought the problem might have more to do with a deficit in "executive function" in portions of the brain’s frontal lobes than with a selective deficit in the brain’s processing of information from faces.

These portions of the frontal lobes are where "executive" tasks, such as sifting through complex information, selecting task-appropriate responses or inhibiting inappropriate ones, take place. "In other words, these tasks require high levels of cognitive control," Belger said.

"We wanted to find out if these executive functions of particular brain regions that are critical for the appropriate generation of actions show deficits in autistic individuals. In addition, we wanted to see if these deficits were further compounded by the presence of social cues on which executive decisions had to be based," Belger added.

The study compared fMRI scans of people with autism and those without the disorder as they performed a one-hour task that required them to attend to certain items in the visual environment while disregarding other items. Specifically, participants wore special goggles through which were displayed pictures of arrows (non-social items) and faces (social items) and were asked to report the direction of the central arrow or central face by pushing a left or right button.

Participants were shown horizontal rows of five arrows or five faces. Sometimes all the arrows and faces were oriented in the same direction. At other times, the central arrow or face was in the opposite direction.

The test with arrows alone had been used previously in studies elsewhere, but the addition of faces was unique to this new study.

"We wanted to know if previous findings of under-responsiveness in the ’face area’ of the brain in autism could be simply attentional, or related to an inability to willingly direct attention to the pertinent feature of a face, gaze direction in this instance," Dichter said, adding that most such studies did not account for where the participants fixed their gaze during brain scanning.

Because individuals with autism typically choose to look away from faces, the previous studies could not disentangle the effects of a preference to look away from faces from actual brain deficits in the ability to process faces. "We required participants to indicate whether faces were looking left or right, thereby requiring that they look at the picture of the face," Dichter said.

In addition, Belger and Dichter pointed to research that correlated the amount of time autistic people looked at features of a face with activation of the amygdala, the "anxiety center" of the brain.

They propose that the use of behavioral interventions aimed, perhaps, at de-sensitizing autistic individuals to the anxiety triggered by looking at faces may help to improve the quality of social interactions, at least from the perspective of caregivers and others involved with them. "The idea is that maybe behavioral methods can help a child with autism approach facial stimuli without anxiety. This is strictly conjecture, but it is a tantalizing possibility," Dichter said.

Imaging allows researchers to begin looking at underlying mechanisms in brain function, Belger said. "Still, we must be careful in our interpretation of the results. Our findings need to be replicated and the research also broadened to include longitudinal studies," he added

L. H. Lang | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>