Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA researchers observe how the immune system recognizes and responds to cancer

16.11.2005


Discovery may result in faster ways to test immunotherapies



Using positron emission tomography (PET) imaging, researchers at UCLA’s Jonsson Cancer Center were able to observe - in real time - how the immune system initially recognizes cancer and mobilizes to fight the disease.

The UCLA study is expected to lead to new ways to test immune-based therapies for cancer and other immune system-related diseases and to monitor human response to cancer treatments much more quickly and without the need for invasive biopsies, said Dr. Owen Witte, a Jonsson Cancer Center researcher, a professor of microbiology, immunology and molecular genetics and the study’s senior author.


The study appears in the Nov. 29, 2005 issue of the Proceedings of the National Academy of Sciences and will be published in an early online edition this week.

"This study is teaching us about how the immune system recognizes cancer. That’s something we couldn’t see before," said Witte, who also serves as director of the UCLA Institute for Stem Cell Biology and Medicine and is a Howard Hughes Medical Institute investigator. "We were able to watch the primary immune response, the very first reaction of the immune system to the presence of cancer in body. This gives us a new tool that will allow us to evaluate novel ways to help the immune system become better at finding and eliminating cancer as well as studying autoimmune and immune deficiency disorders."

In the study, Witte and his team removed bone marrow from a laboratory animal and marked all the cells that would be derived from the bone marrow stem cells with two radioactive probes that are detected by a PET scan. Because they used different probes that show in different ways the cell functions, the research team was able to see more of what was going on in the immune system as it fought cancer, Witte said.

The bone marrow was then put into a different laboratory animal and cancer was introduced so researchers could monitor the immune response – the movement and behavior of lymphocytes and myeloid cells, the cells the immune system uses to fight foreign invaders.

"We were able to observe the moment that the immune system sees the foreign antigens of the cancer in the body and its response, which starts in the local draining lymph nodes," Witte said. "We saw an increased number of lymphocytes and myeloid cells in those lymph nodes, then saw them migrating to the tumor in an attempt to kill the cancer."

One of the probes used to mark the immune system cells and cause them to light up under PET scan, the agent FDG, already is approved for use in humans, Witte said. This could prove valuable in monitoring human response to immune-based therapies such as cancer vaccines.

Researchers could use FDG and PET scanning, for example, on a patient receiving an experimental cancer vaccine. Researchers could determine much more quickly whether the therapy was working by monitoring immune response in real time.

"We could see much sooner if the therapy was effective, without the need for a biopsy," Witte said. "We would also know very rapidly, within a week or two. Prior to this, we had to wait many months to find out if a therapy was working."

Jonsson Cancer Center researchers testing a melanoma vaccine will be collaborating with Witte and his team to monitor immune response in those study volunteers, Witte said. If the therapy is not working, the volunteers would not have to undergo months of unsuccessful treatment and could potentially find another therapy to try.

PET scanning, developed by UCLA scientist Michael Phelps, is a highly sensitive detection method that provides three-dimensional information within the body. The probes used in this study are labeled with positron-emitting radioisotopes, which allow researchers to measure the rates of biochemical processes in the tissue, processes such as immune response.

"Many of the problems in evaluating immunotherapy protocols stem from the lack of effective tools to follow the extent and duration of responses to treatment," the study states. "In this study, we have demonstrated a strategy to monitor a specific primary immune response against a tumor challenge."

Kim Irwin | EurekAlert!
Further information:
http://www.mednet.ucla.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>