Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Restricting diet may reverse early-stage Parkinson’s disease

16.11.2005


OHSU/VAMC study shows mice consuming fewer calories experience boost in essential neurochemical



A new Oregon Health & Science University and Portland Veterans Affairs Medical Center study suggests that early-stage Parkinson’s disease patients who lower their calorie intake may boost levels of an essential brain chemical lost from the neurodegenerative disorder.

The study by Charles Meshul, Ph.D., associate professor of behavioral neuroscience in the OHSU School of Medicine and the VAMC’s Neurocytology Lab, shows that dietary restriction reverses a Parkinson’s-induced drop in glutamate, a brain neurotransmitter important for motor control, function and learning, in a mouse model for the disease’s early stages.


The results, presented today at the Society for Neuroscience’s 35th annual meeting in Washington, D.C., are the first to show that a restricted diet can disable neurochemical changes in the brain occurring in early-stage Parkinson’s even after those changes are observed.

"In the early stages of the disease, we see certain markers in the brain that are changing that may be indicative that dietary restriction is helpful," Meshul said.

Parkinson’s disease is a progressive, degenerative disorder affecting a region of the brain called the substantia nigra where movement is controlled. Symptoms such as tremor or shaking, muscular stiffness or rigidity, slowness of movement and difficulty with balance appear when about 80 percent of cells in the body that produce the neurochemical dopamine die or become impaired.

Incidence increases with age, and the disease is uncommon in people younger than 40. According to the OHSU Parkinson Center of Oregon, the disease affects both men and women across all ethnic lines and occurs in about two of every 100 people older than 55. About 1.5 million Americans suffer from the disease.

Meshul’s lab compared two groups of mice with 60 percent to 75 percent loss of dopamine in the brain, representing early-stage Parkinson’s: One had access to food every day while the other had access every other day, and both were fed over a 21-day period. The mice that ate less often lost 10 percent to 15 percent of their body weight compared to their counterparts.

"Dietary restriction appears to be normalizing the levels of glutamate," Meshul said. "The fact that we’re getting the levels of glutamate back to, essentially, control levels may indicate there are certain synapse changes going on in the brain to counteract the effects of Parkinson’s. In fact, what this may indicate is a reversal of locomotor deficits associated with the disease."

In addition to the rise in glutamate, Meshul’s group, using a dopamine-synthesizing enzyme called tyrosine hydroxylase as a marker for dopamine nerve terminals, found that dietary restriction caused a drop in the number of dopamine terminals in the mouse model for early-stage Parkinson’s.

"As it turns out, dietary restriction, in and of itself, had an effect. It actually caused a small but significant decrease in the numbers of these dopamine terminals. So in other words, dietary restriction really is doing something to the brain," Meshul said. "It could very well be that what dietary restriction is doing is trying to protect the system somehow. And one of the reasons dietary restriction is protective may be that it’s reducing the activity of particular synapses. That’s actually what the data indicates."

Matching the upturn in glutamate levels with positive behavioral changes is difficult at this point in the research, Meshul said. "One of the unfortunate problems with this model is it’s tough to do any behavioral measures. We see a reversal of the effect of glutamate in the brain due to the dietary restriction, but what does that actually mean in terms of the behavior of the animal? Unfortunately, we don’t know. We didn’t measure that."

But a similar primate study at the University of Southern California that Meshul is associated with is testing the hypothesis that glutamate does have an effect on behavior. "It turns out that, in time, these animals recover behaviorally from all of the motor deficits that are associated with (early-stage Parkinson’s)," he said. "Our hypothesis is there may be changes in glutamate that account for these behavioral changes."

Dietary restriction’s beneficial effect on neurological function has been studied in primates by scientists at the National Institutes of Health for 30 years, Meshul said. Researchers found that animals whose calorie intake was lowered by 20 percent aged better, suffered from fewer immunological disorders, displayed healthier hair and skin tone, and "looked significantly better than a counterpart that hasn’t had a restricted diet."

"They live longer," Meshul said. "It’s been known for many, many years that dietary restriction is good."

Scientists already have shown dietary restriction initiated before the onset of early Parkinson’s can protect against neurochemical changes in the brain caused by the disease. In 1999, researchers found that mice on restricted diets for three months prior to an early Parkinson’s diagnosis lost fewer dopamine-synthesizing neurons.

"There’s not as much loss of dopamine if you restrict their diets ahead of time," Meshul noted.

Meshul’s lab is finding that dietary restriction isn’t the only way to boost neurological function in Parkinson’s disease. Early results of another study the group is conducting have shown that rats with 90 percent loss of dopamine in the brain – or full-blown Parkinson’s disease – under a four-week exercise regimen can run twice as long as parkinsonian rats that didn’t exercise.

"We’re trying to make the correlation that exercise definitely helps in terms of the parkinsonian animal and, in fact, in human studies it’s been shown that any sort of exercise helps patients," Meshul said.

Jonathan Modie | EurekAlert!
Further information:
http://www.ohsu.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>