Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Brain memory area modifies its ’wiring diagram’ during the female cycle


Researchers at Northwestern University and Columbia University have found that "wiring" in female rat brain memory area expands and retracts in relation to the amount of estrogen present during the estrous/menstrual cycle.

A study describing this research will be presented on Nov. 14 by Aryeh Routtenberg, professor of psychology, neurobiology and physiology at Northwestern University, at the 2005 Society for Neuroscience Meeting in Washington, D.C.

Because this area of the brain, the hippocampus, has been shown to be critical to both humans and animals for memory processes, the group’s finding lends support to a vast array of empirical and anecdotal evidence concerning variations in cognition and memory processes as a function of the time of the female cycle.

That this rewiring is due to estrogen was shown in experiments using hormone replacement therapy to compare females with low, moderate or high levels. Only when the high physiological level was reached – similar to that seen during the peak of estrogen levels during the estrous cycle – was the growth observed.

The investigators suggest the provocative hypothesis that the ability of the female brain network to modify itself in the presence of increased estrogen may facilitate processing of complex spatial environments to enhance reproductive success, for example, selecting a mate or, as a mother, finding food, water and shelter while avoiding predators.

"Beyond the findings relative to estrogen, and its regulation of female cognition, the results of the study suggest that the brain’s capacity for growth is well beyond anything we considered in the past," said Routtenberg, who is director of The Cresap Neuroscience Laboratory and a researcher at the Northwestern University Institute for Neuroscience.

"This growth also occurs during learning, but it is a much slower process," Routtenberg said.

Earlier research has shown that learning encourages growth of mossy fibers, which are axons, or nerve fibers, in the hippocampus. Mossy fibers are unique because they have high concentrations of zinc and the cells that give rise to these axons, the granule cells, show neurogenesis, or birth of new nerve cells in adults.

Elizabeth Crown | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>