Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Brain memory area modifies its ’wiring diagram’ during the female cycle


Researchers at Northwestern University and Columbia University have found that "wiring" in female rat brain memory area expands and retracts in relation to the amount of estrogen present during the estrous/menstrual cycle.

A study describing this research will be presented on Nov. 14 by Aryeh Routtenberg, professor of psychology, neurobiology and physiology at Northwestern University, at the 2005 Society for Neuroscience Meeting in Washington, D.C.

Because this area of the brain, the hippocampus, has been shown to be critical to both humans and animals for memory processes, the group’s finding lends support to a vast array of empirical and anecdotal evidence concerning variations in cognition and memory processes as a function of the time of the female cycle.

That this rewiring is due to estrogen was shown in experiments using hormone replacement therapy to compare females with low, moderate or high levels. Only when the high physiological level was reached – similar to that seen during the peak of estrogen levels during the estrous cycle – was the growth observed.

The investigators suggest the provocative hypothesis that the ability of the female brain network to modify itself in the presence of increased estrogen may facilitate processing of complex spatial environments to enhance reproductive success, for example, selecting a mate or, as a mother, finding food, water and shelter while avoiding predators.

"Beyond the findings relative to estrogen, and its regulation of female cognition, the results of the study suggest that the brain’s capacity for growth is well beyond anything we considered in the past," said Routtenberg, who is director of The Cresap Neuroscience Laboratory and a researcher at the Northwestern University Institute for Neuroscience.

"This growth also occurs during learning, but it is a much slower process," Routtenberg said.

Earlier research has shown that learning encourages growth of mossy fibers, which are axons, or nerve fibers, in the hippocampus. Mossy fibers are unique because they have high concentrations of zinc and the cells that give rise to these axons, the granule cells, show neurogenesis, or birth of new nerve cells in adults.

Elizabeth Crown | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>