Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exercise plus gene therapy shows promise for treating Lou Gehrig’s disease

15.11.2005


A new study in mice gives hope that a combination of gene therapy and exercise may extend the lives of people who have Lou Gehrig’s disease.



Amyotrophic lateral sclerosis (ALS), or Lou Gehrig’s disease, is a chronic and progressive illness that leads to paralysis and ultimately death. There are no known cures, and the only FDA-approved method for treating the disease is a drug that may extend life between three and six months, said Brian Kaspar, the study’s lead author and an assistant professor of pediatrics at Ohio State University.

In the study, some of the mice were treated with a combination of exercise and therapy with a gene known to help protect motor neurons. “The combined therapy nearly doubled the lifespan of mice with ALS,” said Kaspar.


Mice that had ALS but received no treatment lived an average of 120 days. However, mice that were allowed to exercise and also received gene therapy lived an average of 210 days. Healthy mice usually live for one or two years. “Somehow, the two treatments complement each other and benefit the mouse,” said Kaspar, who is also an investigator with the Center for Gene Therapy at Columbus Children’s Research Institute.

He presented the work November 14 in Washington, D.C., at the annual meeting of the Society for Neuroscience.

In the current study, the researchers looked at the effects of exercise both with and without additional gene therapy treatment. A group of mice serving as a control had ALS but received no treatment.

The study also showed that mice with ALS benefited from exercise more if they began earlier in life. Some mice began exercise treatment (with no gene therapy) at 40 days of age, while other mice didn’t start to exercise until 90 days of age.

The mice that started exercising when they were younger lived about a month longer than the control mice, while the mice that began exercising at 90 days of age lived an average of 11 days longer than the control mice.

“The earlier the mice could exercise, the better they did,” Kaspar said.

Studies of other neuronal diseases, such as Parkinson’s and Huntington’s, have suggested that exercise may actually prevent neurons from dying.

In related work, Kaspar and his colleagues found that gene therapy extended mouse survival by about 20 to 25 days. The gene they used, insulin-like growth factor 1 (IGF-1), produces a hormone by the same name. This hormone helps protect motor neurons and also stimulates muscle growth.

“Research suggests that exercise boosts levels of IGF-1 as well as other proteins that may be beneficial,” Kaspar said. “Combining the two had a profound effect on survival and function, suggesting that the treatments together may make a significant difference in ALS progression.”

But while this small study in mice shows promise, researchers still have a ways to go before human trials can begin. Nor can they say what kind of exercise may be best for someone with ALS.

Kaspar and his colleagues have already started the next phase of the mouse study, however – they are training mice to run on a treadmill. Training the animals will let the researchers control how long a mouse can exercise. They hope to be able to measure the effects of different durations of exercise on the disease.

“Understanding how exercise affects gene expression may help us find new therapies that slow down the progression of ALS,” Kaspar said. The disease affects about 30,000 people in the United States, with roughly 5,000 new cases reported each year. Average life expectancy is five years from the onset of the disease.

The cause of ALS is unknown in all but 2 percent of cases, where the disease is caused by a known genetic mutation.

“The ultimate challenge is to figure out what triggers motor neuron death in the other 98 percent of people with the disease,” Kaspar said.

Kaspar conducted the study with Soo Kim, a pre-doctoral fellow in biochemistry at Ohio State; with Liza Grissett and Priya Umapathi, both with Columbus Children’s Research Institute; and with Lindsay Frost, Lindsey Christian and Fred Gage, all with the Salk Institute in La Jolla, Calif.

This work was supported by a grant from Project A.L.S the National Institutes of Health’s National Institute of Neurological Disorders and Stroke.

Brian Kaspar | EurekAlert!
Further information:
http://www.osu.edu

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>