Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic Cancer Center finds better predictors for outcomes after radical prostatectomy

14.11.2005


Speed of PSA increase matters more than PSA level



In the largest study of its kind to date, Mayo Clinic researchers report that prostate specific antigen (PSA) kinetics, both velocity and doubling time, can be used to predict disease progression and likelihood of death after radical prostatectomy surgery, suggesting that this could be used to guide treatment decisions. Study results are published in the December issue of The Journal of Urology.

"The level of PSA in the blood has less prognostic value than we previously thought, and we don’t have another serum marker to help us," says Michael Blute, M.D., Mayo Clinic urologist and lead investigator of the study. "It was important for us to find other ways to look at PSA data and translate that into information that will save lives, and I believe we have done that."


Prostate cancer is the second most common cancer in men (skin cancer is first) and the second leading cause of cancer death in American men, exceeded only by lung cancer. This year, the American Cancer Society estimates 232,000 new cases of prostate cancer will be diagnosed. While one in six men will be diagnosed with prostate cancer in his lifetime, only one in 33 will die of it. However, because it causes disability and death, finding new strategies to better target treatments is an important public health goal.

Dr. Blute and his fellow researchers reviewed the records of 2,290 patients with multiple preoperative PSA measurements, as well as 5,176 patients with only one preoperative measurement, looking at the rate at which PSA increased in the body -- thought to indicate cancer growth. This was measured as both the PSA velocity (PSAV), the rate of increase in PSA levels over time, and the PSA doubling time (PSADT), a measure of how quickly PSA levels double. The researchers found that while PSAV is simpler to calculate, PSADT may be a better indicator of untreated prostate cancer.

Over an average follow-up period of about seven years, cancer spread or recurrence, and deaths from cancer were recorded. Biochemical progression was noted in 25.5 percent of the patients, clinical progression in 6.8 percent and cancer death in 1.8 percent. PSAV and PSADT both predicted progression and death. PSAV greater than 3.4 ng/ml yearly correlated to men being 6.54 times more likely to die than those with lower PSAV. PSADT quicker than 18 months correlated to the risk of death being 6.22 times higher than for those with longer PSADT.

"This provides valuable pretreatment prognostic factors for prostate cancer," says primary author Shomik Sengupta, M.D. "We hope that our work will help in the doctor-patient discussion and result in more informed decisions relating to observation, intervention and adjuvant treatment."

The study group consisted of patients who had undergone radical prostatectomy for prostate cancer between 1990 and 1999 at Mayo Clinic. Preoperative and postoperative PSA measurements were obtained from referring physicians and/or Mayo laboratory testing.

Other Mayo Clinic researchers who contributed to this study include Robert Myers, M.D.; Jeffrey Slezak; Eric Bergstralh; and Horst Zincke, M.D., Ph.D.

Elizabeth Zimmermann | EurekAlert!
Further information:
http://www.mayo.edu
http://mayoresearch.mayo.edu/mayo/research/prostate_program
http://www.mayoclinic.org/prostate-cancer

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>