Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic Cancer Center finds better predictors for outcomes after radical prostatectomy

14.11.2005


Speed of PSA increase matters more than PSA level



In the largest study of its kind to date, Mayo Clinic researchers report that prostate specific antigen (PSA) kinetics, both velocity and doubling time, can be used to predict disease progression and likelihood of death after radical prostatectomy surgery, suggesting that this could be used to guide treatment decisions. Study results are published in the December issue of The Journal of Urology.

"The level of PSA in the blood has less prognostic value than we previously thought, and we don’t have another serum marker to help us," says Michael Blute, M.D., Mayo Clinic urologist and lead investigator of the study. "It was important for us to find other ways to look at PSA data and translate that into information that will save lives, and I believe we have done that."


Prostate cancer is the second most common cancer in men (skin cancer is first) and the second leading cause of cancer death in American men, exceeded only by lung cancer. This year, the American Cancer Society estimates 232,000 new cases of prostate cancer will be diagnosed. While one in six men will be diagnosed with prostate cancer in his lifetime, only one in 33 will die of it. However, because it causes disability and death, finding new strategies to better target treatments is an important public health goal.

Dr. Blute and his fellow researchers reviewed the records of 2,290 patients with multiple preoperative PSA measurements, as well as 5,176 patients with only one preoperative measurement, looking at the rate at which PSA increased in the body -- thought to indicate cancer growth. This was measured as both the PSA velocity (PSAV), the rate of increase in PSA levels over time, and the PSA doubling time (PSADT), a measure of how quickly PSA levels double. The researchers found that while PSAV is simpler to calculate, PSADT may be a better indicator of untreated prostate cancer.

Over an average follow-up period of about seven years, cancer spread or recurrence, and deaths from cancer were recorded. Biochemical progression was noted in 25.5 percent of the patients, clinical progression in 6.8 percent and cancer death in 1.8 percent. PSAV and PSADT both predicted progression and death. PSAV greater than 3.4 ng/ml yearly correlated to men being 6.54 times more likely to die than those with lower PSAV. PSADT quicker than 18 months correlated to the risk of death being 6.22 times higher than for those with longer PSADT.

"This provides valuable pretreatment prognostic factors for prostate cancer," says primary author Shomik Sengupta, M.D. "We hope that our work will help in the doctor-patient discussion and result in more informed decisions relating to observation, intervention and adjuvant treatment."

The study group consisted of patients who had undergone radical prostatectomy for prostate cancer between 1990 and 1999 at Mayo Clinic. Preoperative and postoperative PSA measurements were obtained from referring physicians and/or Mayo laboratory testing.

Other Mayo Clinic researchers who contributed to this study include Robert Myers, M.D.; Jeffrey Slezak; Eric Bergstralh; and Horst Zincke, M.D., Ph.D.

Elizabeth Zimmermann | EurekAlert!
Further information:
http://www.mayo.edu
http://mayoresearch.mayo.edu/mayo/research/prostate_program
http://www.mayoclinic.org/prostate-cancer

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>