Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic Cancer Center finds better predictors for outcomes after radical prostatectomy

14.11.2005


Speed of PSA increase matters more than PSA level



In the largest study of its kind to date, Mayo Clinic researchers report that prostate specific antigen (PSA) kinetics, both velocity and doubling time, can be used to predict disease progression and likelihood of death after radical prostatectomy surgery, suggesting that this could be used to guide treatment decisions. Study results are published in the December issue of The Journal of Urology.

"The level of PSA in the blood has less prognostic value than we previously thought, and we don’t have another serum marker to help us," says Michael Blute, M.D., Mayo Clinic urologist and lead investigator of the study. "It was important for us to find other ways to look at PSA data and translate that into information that will save lives, and I believe we have done that."


Prostate cancer is the second most common cancer in men (skin cancer is first) and the second leading cause of cancer death in American men, exceeded only by lung cancer. This year, the American Cancer Society estimates 232,000 new cases of prostate cancer will be diagnosed. While one in six men will be diagnosed with prostate cancer in his lifetime, only one in 33 will die of it. However, because it causes disability and death, finding new strategies to better target treatments is an important public health goal.

Dr. Blute and his fellow researchers reviewed the records of 2,290 patients with multiple preoperative PSA measurements, as well as 5,176 patients with only one preoperative measurement, looking at the rate at which PSA increased in the body -- thought to indicate cancer growth. This was measured as both the PSA velocity (PSAV), the rate of increase in PSA levels over time, and the PSA doubling time (PSADT), a measure of how quickly PSA levels double. The researchers found that while PSAV is simpler to calculate, PSADT may be a better indicator of untreated prostate cancer.

Over an average follow-up period of about seven years, cancer spread or recurrence, and deaths from cancer were recorded. Biochemical progression was noted in 25.5 percent of the patients, clinical progression in 6.8 percent and cancer death in 1.8 percent. PSAV and PSADT both predicted progression and death. PSAV greater than 3.4 ng/ml yearly correlated to men being 6.54 times more likely to die than those with lower PSAV. PSADT quicker than 18 months correlated to the risk of death being 6.22 times higher than for those with longer PSADT.

"This provides valuable pretreatment prognostic factors for prostate cancer," says primary author Shomik Sengupta, M.D. "We hope that our work will help in the doctor-patient discussion and result in more informed decisions relating to observation, intervention and adjuvant treatment."

The study group consisted of patients who had undergone radical prostatectomy for prostate cancer between 1990 and 1999 at Mayo Clinic. Preoperative and postoperative PSA measurements were obtained from referring physicians and/or Mayo laboratory testing.

Other Mayo Clinic researchers who contributed to this study include Robert Myers, M.D.; Jeffrey Slezak; Eric Bergstralh; and Horst Zincke, M.D., Ph.D.

Elizabeth Zimmermann | EurekAlert!
Further information:
http://www.mayo.edu
http://mayoresearch.mayo.edu/mayo/research/prostate_program
http://www.mayoclinic.org/prostate-cancer

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>