Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earliest European farmers left little genetic mark on modern Europe

11.11.2005


Modern Europeans may largely be descended from ’old stone age’ hunter-gatherers



The farmers who brought agriculture to central Europe about 7,500 years ago did not contribute heavily to the genetic makeup of modern Europeans, according to the first detailed analysis of ancient DNA extracted from skeletons of early European farmers.

The passionate debate over the origins of modern Europeans has a long history, and this work strengthens the argument that people of central European ancestry are largely the descendants of "Old Stone Age," Paleolithic hunter-gatherers who arrived in Europe around 40,000 years ago rather than the first farmers who arrived tens of thousands of years later during the Neolithic Age.


This paper appears in the 11 November 2005 issue of the journal Science published by AAAS the nonprofit science society.

The researchers from Germany, the United Kingdom and Estonia extracted and analyzed DNA from the mitochondria of 24 skeletons of early farmers from 16 locations in Germany, Austria and Hungary. Six of these 24 skeletons contain genetic signatures that are extremely rare in modern European populations. Based on this discovery, the researchers conclude that early farmers did not leave much of a genetic mark on modern European populations.

"This was a surprise. I expected the distribution of mitochondrial DNA in these early farmers to be more similar to the distribution we have today in Europe," said Science author Joachim Burger from Johannes Gutenberg Universität Mainz in Mainz, Germany.

"Our paper suggests that there is a good possibility that the contribution of early farmers could be close to zero," said Science author Peter Forster from the University of Cambridge in Cambridge, UK.

To get at questions surrounding the ancestry of modern Europeans, the researchers studied mitochondrial DNA from early farmers in Central Europe. Mothers pass mitochondrial DNA to their offspring primarily "as is," without mixing or recombination with mitochondrial DNA from fathers. Mitochondrial DNA, therefore, provides a way for researchers to piece together how closely members of a species are related, using maternal lineages as a guide, explained Burger.

In the new study, the researchers attempted to extract mitochondrial DNA from the skeletons of 56 humans who lived in various parts of Central Europe about 7500 years ago. These ancient humans all belonged to well known cultures that can be identified by the decorations on their pottery -- the Linearbandkeramik (LBK) and the Alföldi Vonaldiszes Kerámia (AVK). The presence of these cultures in Central Europe marks the onset of farming in the region. These farming practices originated in the "Fertile Crescent" of the Near East about 12,000 years ago.

From bones and teeth of these 56 skeletons, the researchers extracted mitochondrial DNA sufficient for analysis from 24 of the skeletons. Six of the 24 early farmers belonged to the "N1a" human lineage, according to genetic signatures or "haplotypes" in their mitochondrial DNA that the researchers studied. These six skeletons are from archeological sites all across central Europe. Few modern Europeans belong to this N1a lineage, and those that do are spread across much of Europe.

The other 18 early farmers belonged to lineages not useful for investigating the genetic origins of modern Europeans because their genetic signatures from the scrutinized region of mitochondrial DNA are widespread in living humans, according to the authors.

Using the tools of population genetics and a worldwide database of 35,000 modern DNA samples, the researchers investigated the genetic legacy of early European farmers based on the fact that six of the 24 early European farmers are from a lineage that is now extremely rare in Europe and around the world.

At least 8 percent of the early farmers belonged to the N1a lineage, according to the researchers who estimate the range was between 8 and 42 percent.

Even this conservative estimate of 8 percent stands in stark contrast to the current percentage of central Europeans who belong to the N1a lineage -- 0.2 percent. This discrepancy suggests that these early farmers did not leave much of a genetic mark on modern Central Europeans, the authors say.

"It’s interesting that a potentially minor migration of people into Central Europe had such a huge cultural impact," said Forster.

Small pioneer groups may have carried farming into new areas of Europe, the authors suggest. Once farming had taken hold, the surrounding hunter-gatherers could have adapted the new culture and then outnumbered the original farmers, diluting their N1a frequency to the low modern level. A range of archeological research supports different aspects of this hypothesis, the authors say.

Alternatively, a different population may have replaced the early farmers in Central Europe, eliminating most of the N1a types, but archaeological evidence for this scenario is scant, according to the authors.

Natasha Pinol | EurekAlert!
Further information:
http://www.sciencemag.org
http://www.aaas.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>