Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Combination microbicides protect monkeys against HIV-like virus

02.11.2005


Experiments in female monkeys have for the first time shown that when used in combination, vaginal gels known as microbicides can protect against an HIV-like virus. The research, funded largely by the National Institute of Allergy and Infectious Diseases (NIAID), one of the National Institutes of Health (NIH), suggests that similar combination microbicides could potentially provide a safe, effective and practical way to prevent HIV transmission to women, according to study investigators.



The study, published online October 30 in the journal Nature, represents the first successful testing of combination microbicides in a primate model.

Women make up nearly half of all people living with HIV worldwide, and a vast majority of new cases of HIV infection in women result from heterosexual intercourse. "This study demonstrates that combination microbicides are feasible," says NIAID Director Anthony S. Fauci, M.D. "We need to build on these promising animal studies and move toward establishing the safety and effectiveness of combination microbicides in women."


Vaginal microbicides include creams, gels or other substances that could be applied topically to prevent the transmission of HIV and other sexually transmitted infections. At least five different candidate microbicides currently are being evaluated in large clinical trials, but no microbicide has yet been approved for human use.

The Nature study was led by John P. Moore, Ph.D., of the Weill Medical College of Cornell University in New York City, and Ronald S. Veazey, D.V.M., Ph.D., of the Tulane National Primate Research Center in Covington, LA. For the experiments, they used simian-human immunodeficiency virus (SHIV), a hybrid virus made in the laboratory from HIV and its cousin, SIV, which infects only non-human primates. The researchers tested three microbicide gels alone and in combination. Two contained small molecules and the third featured a modified assembly of protein building blocks; each of the three was designed to block SHIV from entering specific cells in the vaginal area and thereby prevent the virus from invading the monkey’s body. The two small molecules were provided by Bristol Myers Squibb Inc. (BMS), based in Wallingford, CT, and Merck Research Laboratories, headquartered in Rahway, NJ. Weill Cornell Medical College supplied the third compound, which is similar to the approved anti-HIV drug Enfuvirtide (Fuzeon).

During testing, researchers sedated the monkeys, applied the experimental gels, and exposed the animals to a single virus dose 30 minutes to 12 hours later.

Each of the three microbicide gels provided protection against the virus when used alone. Moreover, of the 20 monkeys given the BMS and Merck microbicides in combination, 16 were protected from infection. All three monkeys given the triple combination of microbicides remained virus-free. None of the monkeys appeared to experience vaginal irritation or inflammation from the experimental gels. Of note, the researchers found that the Merck and BMS compounds could be applied up to six hours prior to exposure to the virus and still offer protection.

"This is encouraging for the development of a microbicide for use in the real world," says Dr. Moore.

Jim Turpin, Ph.D., of NIAID’s Topical Microbicide Team, says, "Just as we’ve seen with combination antiviral medicines, this study shows that if you can hit two or more different targets of the virus, the greater the effectiveness of the product."

The research team deliberately chose the three specific test compounds for several reasons. "We felt these inhibitors were likely to be fairly safe," says Dr. Veazey. "Similar compounds have a good safety record in humans thus far."

The small molecules were also chosen for their potential as a cost-effective product for women. "A microbicide has to be safe, effective and socially acceptable, but the cost of its active ingredients will also be an issue," says Dr. Moore. "We didn’t want to work with inhibitors that could not be made in large quantities or would be produced only at great expense. Instead, we selected compounds similar to those now being developed as antiviral drugs for treating HIV-1 infection because we thought they might be practical to develop as a microbicide."

Although encouraged by their findings, Dr. Moore notes, "Animal studies are an important step, but there is much more work that needs to be done before a product can be made available for human use. Small clinical trials to determine safety and optimal dosage will be the next stage."

Kathy Stover | EurekAlert!
Further information:
http://www.niaid.nih.gov

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>